

THEME 8

Socio-economic sciences and Humanities

Collaborative Project, Small or medium scale focused research project

GILDED Work Package Five Report:

 Agent-Based Modelling

Project acronym: GILDED

Project full title: Governance, Infrastructure, Lifestyle Dynamics and

Energy Demand: European Post-Carbon Communities

Grant agreement no.: 225383

Date: 30 April 2012

2

1 Introduction ... 5

2 The Prototype Model: ABMED ... 8

2.1 Introduction... 8

2.2 Method ... 8

2.3 Results... 10

2.4 Discussion and conclusion... 12

3 Ontology Elicitation... 13

3.1 Introduction... 13

3.2 Method ... 14

3.3 Results... 17

3.4 Discussion .. 20

3.5 Conclusion ... 22

4 Final Version of CEDSS... 24

4.1 Overview ... 24

4.1.1 Purpose... 24

4.1.2 Entities, State Variables and Scales ... 24

4.1.3 Process Overview and Scheduling ... 27

4.2 Design Concepts... 27

4.3 Details ... 29

4.3.1 Initialisation... 29

4.3.2 Input ... 29

4.3.3 Submodels .. 30

5 Ontology Export from Netlogo ... 34

5.1 Usage .. 35

5.1.1 owl:domain link-breed breed .. 36

5.1.2 owl:range link-breed breed ... 36

5.1.3 owl:imports IRI….. 36

3

5.1.4 owl:model IRI .. 36

5.1.5 owl:structure file-name .. 36

5.1.6 owl:state file-name time-step [extension] (experimental) 36

5.2 Example... 37

6 Data collection, and Implementation of the CEDSS Model ... 39

6.1 Household file (urban) .. 41

6.2 Dwellings file (urban).. 43

6.3 Patch file (urban) and Patch legend file.. 44

6.4 Insulation file ... 45

6.5 Insulation upgrade file .. 46

6.6 Appliances file .. 46

6.7 Appliance replacement file ... 50

6.8 Fuel file.. 50

6.9 Appliances fuel file (urban) ... 51

6.10 Suppliers file .. 51

6.11 Maximum in category file ... 52

6.12 Household initial appliance file (urban).. 52

6.13 Summary ... 53

7 Calibration and Validation of the CEDSS model ... 54

7.1 Calibration Stage 1A ... 54

7.2 Calibration Stage 1B ... 56

7.3 Calibration Stage 2A ... 57

7.4 Calibration Stage 2B ... 58

7.5 Validation on the Rural Subsample .. 61

8 Scenarios to 2050 ... 63

9 Conclusions and Future Work .. 70

10 References ... 72

4

Appendix 1: Description of Workpackage 5 from GILDED Grant Agreement 75

Appendix 2: Derivation of ontological concepts from each workshop................................. 77

Workshop A, 19 April 2010 .. 77

Workshop B, 23 April 2010 .. 80

Workshop C, 29 June 2010 .. 82

Group 1’s cards ... 82

Group 2’s cards ... 84

Appendix 3: Screenshot of CEDSS Model .. 87

Appendix 4: CEDSS Code ... 88

5

1 Introduction
This report describes GILDED work package 5, Agent-Based Modelling. GILDED (Governance,

Infrastructure, Lifestyle Dynamics and Energy Demand) is a European Commission Seventh

Framework Programme project funded under the topic Socio-Economic Factors and Actor

Shaping the “Post-Carbon” Society.

Agent-based modelling stresses the interaction between social actors (most often

individuals or households) and their physical and social environment. It may be contrasted

with conventional economic modelling, which generally assumes rational, self-interested

individuals, making their decisions on the basis of complete information; even where

restrictions are placed on rationality or the availability of information, they are

conceptualised as deviations from this abstract ideal. Agent-based modelling, on the other

hand, focus on the relatively simple heuristics human agents employ for most of their

dealings with the external world, and on the influence that habit and social interaction have

on how they behave. Agent-based modelling has been extensively used in the study of social

dilemmas: situations in which each of a group of actors will be better off if all cooperate, for

example to limit use of some resource, but each has an incentive to cheat (Gotts, Polhill &

Law, 2003).

A classic study is of the use of rain-fed irrigation systems in Bali (Lansing & Kremer, 1993)

which indicated that bottom-up organisation of planting and cropping schedules could

generate near-optimal results without central planning. Agent-based modelling has been

combined in sustainability studies with a variety of data-gathering techniques, including

sample surveys (Schreinemachers & Berger, 2006) in a study that aimed to disentangle the

combined effects of soil fertility decline, population growth, and market institutions on the

dynamics of poverty and productivity in Uganda. Alcamo (2001) described a method for

combining simulation modelling with scenario development, the “story and simulation”

(SAS) approach, in which scenario storylines produced by experts or stakeholders are

reiteratively refined and quantified using simulation modelling, large numbers of model runs

are used to find a policy approach that will give acceptable results across a wide range of

possible futures. While the work reported here has not used either approach as described by

these authors, it contains elements of both.

In the context of GILDED, agent-based modelling constitutes work package 5. The function of

the work package within GILDED is described as follows in the Description of Work:

Agent-based modelling acts as a test field and means of scaling up findings from

field research. Principles drawn from the lifestyles and structural analyses will be

utilised designing the structural features (‘rules of the game’), communication and

interaction networks, and decision-rules guiding agent behaviours in the models,

thus illuminating the interplay of these issues. The chief contribution of agent-based

modelling to the domain of computer simulation is through the recognition of the

importance of individual differences in social system (as opposed to the assumption

made in neoclassical economics that such differences generally cancel out), and of

the significance of interactions among individuals in generating behaviour observed

6

at the social scale. As such, agent-based modelling draws on complex systems

theory (Holland and Miller, 1991). GILDED will develop agent-based models of

energy use which demonstrate potential outcomes of specific energy-related policies

and initiatives. It will form a key part of the project’s foresight component, being

used to explore clusters of related scenarios for the period to 2050. Each such cluster

will investigate the potential of specific policy instruments in reducing carbon-

intensive energy demand.

Use of agent-based modelling will also provide a real-world test-bed for a new

approach to developing agent-based models, based on using “ontologies” (Staab

and Studer 2004). An ontology in this sense is a formal classification scheme for the

entities in a computer or conceptual model, in a narrative, or in the system a model

is intended to represent. The appropriate use of ontologies will make the structure

of agent-based models more explicit and open to discussion with non-specialists,

through using ontologies as intermediate formal descriptions between natural

language and computer programming languages.

This document describes and explains the work we have undertaken in pursuit of the

objectives outlined above. Following this introduction, the report first describes (section 2)

ABMED (Agent-Based Model of Energy Demand) the prototype model constructed in the

early stages of the research. Section 3 then covers our work on eliciting ontological

information from the Scottish case study Stakeholder Advisory Group, and from our non-

modelling colleagues within GILDED. Section 4 is an overall description of CEDSS, the revised

model, based on ABMED, the ontology elicitation exercises, and data collected both from

the questionnaire on values and behaviours related to energy and climate change, and the

accompanying carbon calculator, distributed to households in Aberdeen City and

Aberdeenshire in work packages 3 and 4, and from a wide range of publicly available

sources. The description follows an increasingly widely-used protocol for describing agent-

based and related models, ODD (Grimm et al 2006, 2010), which has many features in

common with the ontological approach. Section 5 describes how an ontology can be

automatically extracted from models written in the Netlogo language (both ABMED and

CEDSS are written in Netlogo).

The next three sections describe how empirical data has been used in implementing CEDSS,

and the results we have obtained so far from running it. CEDSS requires a number of input

data files in order to run; section 6 describes those that remained fixed, or partly so, for all

the model runs we performed while calibrating the model, on the urban subsample of

households who completed the GILDED questionnaire and carbon calculator in 2010. Section

7 describes the process of calibration, and of validating the calibrated model, CEDSS 2A:14,

on the corresponding rural subsample. Section 8 describes the scenario runs of CEDSS 2A:14

to 2050, under a range of possible conditions and policy initiatives. We conclude that the

tendencies of recent years for domestic energy for heating to decrease, while increases in

energy demand for household appliances partially offset this trend, are likely to continue,

and will be modified primarily by the trajectories of household incomes and fuel prices.

However, policy measures directly aimed at reducing domestic energy demand, in particu lar

the regulation of appliance efficiency, can exert a significant downward pressure on the

7

increase in household appliance energy demand. Moreover, we see signs that individual

communities may show anomalously low domestic energy demand, possibly as a result of

social interactions leading to the spread of unusually pro-environmental values. Finally,

section 9 draws conclusions, and indicates directions for future work with CEDSS.

8

2 The Prototype Model: ABMED
This work was presented to the Sixth Conference of the European Social Simulation

Association 2009 (Gotts 2009).

2.1 Introduction
Household energy use and personal transport account for a considerable proportion of total

energy use, and greenhouse gas emissions, in countries. In Europe, about 35% of all primary

energy use and 40% of all greenhouse gas emissions come from private households—with

regional differences (Mäenpää 2005, Weber and Perrels 2000). Home energy, personal

travel, and food and beverages are the most important sets of activities. US studies find

similar results (Bin and Dowlatabadi 2005). Given the vital importance of reducing

greenhouse gas emissions from energy use, it is surprising how little attention has been

given to the dynamics of household energy demand; and in particular to the interactions

between technological change – which can act both to reduce energy use through greater

efficiency, and to increase it by producing an unending supply of new household appliances

– economic conditions, and socio- cultural forces. This section introduces and gives the first

results from a prototype model of energy demand in a small community.

2.2 Method
ABMED was built as a prototype agent-based model of community energy demand, to act as

a precursor to the main CEDSS model, presented later in this report. As such, it was intended

to help in identifying and exploring socio-economic and psychological influences acting on,

within and between households, which are both important in determining the level of

demand. The need for rapid prototyping led to the decision to write ABMED in Ne tLogo

(Wilensky 1999).

The agents in the simulations described here represent households; the individuals within

these households are not represented. Each household is located in a house, in which it

remains for the duration of the simulation (12 years). The houses are arranged on a grid of

streets; in the simulations reported, this grid “wraps around” in both directions to produce a

toroidal topology. A household has a net monthly income (this is taken to be net of costs

other than those related to household energy consumption, and buying energy-using

household appliances), which remains fixed for the simulation’s duration; net monthly. The

net monthly incomes of households are drawn from an exponential distribution, with a

mean that is a model parameter.

Households begin with just one appliance, a boiler, taken to provide space heating and hot

water. Possession of a boiler is taken to be essential – it must be replaced if it breaks down

(all appliances have an associated probability per month of breaking down irreparably, but

ongoing maintenance costs are not represented). It may be assumed that households also

possess other appliances generally taken to be essential in rich countries, such as a

refrigerator and television, but these also are not currently represented in the model. During

the course of the simulation, a household can acquire additional appliances.

An appliance has the following properties:

9

 "monetary-capital-cost": the amount a household must pay to acquire it, taken to

include installation costs, insurance, etc.

 "energy-capital-cost": how much energy it took to manufacture and deliver it –

unrealistically, households are assumed to know this.

 "energy-monthly-cost-list": a 12-element list of average monthly energy usage:

many appliances, not only those providing heating, will have different patterns of

use at different times of the year.

 "essential": either true or false; in the current simulations, only a boiler is regarded

as essential.

 "breakdown-probability": per month.

 "can-replace-list": a list of the appliances the given appliance can replace if they

break down.

 "first-month-available", "last-month-available": the model has a monthly time-step,

with new appliances being bought at the end of the month.

Values for the “monetary-capital-cost” and “energy-monthly-cost-list” have been based

where possible on information from commercial websites, and some run by UK non-

governmental organizations such as the Energy Saving Trust1; but the concern has been to

get reasonable rather than precise values (the latter, of course, vary considerably across

appliances of the same type, and in the case of energy use, across households); the “energy -

capital-cost” and “breakdown-probability” values were estimated for the purposes of

making explorations with this initial prototype. Appliances also have an identifying

description drawn from a three-level categorization: high-level function (currently, just

“heating” or “other”), general type of appliance (“standard-boiler”, “condensing-boiler”,

“TV”, “freezer”, etc.), and specific type of appliance. For “other” appliances, replacement is

allowed of any appliance of the same general type (e.g. any TV can replace another). Among

heating appliances, there are two general types: “standard” and “condensing” boilers. In line

with UK government regulations, it is not permitted to install a standard boiler (in the real

world, some exceptions are permitted). Thus when a standard boiler breaks down, it must

be replaced with a (considerably more efficient) condensing boiler; the household can also

decide to make the change even without a breakdown. In the runs reported here, a

condensing boiler becomes available at a subsidized price at month 24 (the first month

being month 0 – both month 0 and month 24 represent January).

In addition to their monthly net income, households have an initial capital reserve. They can

also borrow up to a fixed multiple of their monthly net income (this multiple is a model

parameter). In addition, they have three parameters representing the likelihood that they

will adopt a particular “goal frame” (Lindenberg and Steg 2007) when making decisions. In

the term used by these authors, the three types of goal -frame: “hedonic”, “gain”, and

“normative”, represent competing clusters of values: roughly, those of immediate

enjoyment, longer-term material gain, and doing what is perceived as right. In the context of

ABMED, they appear as three alternative decision-making procedures, applied when

deciding whether to buy an energy-using household appliance. The “hedonic” procedure

makes decisions based on the “hedonic-score” of appliances; the “gain” procedure tries to

1 http://www.energysavingtrust.org.uk/

10

minimize expenditure (buying only when an essential appliance must be replaced, or when a

net saving can be expected (from buying a more energy-efficient appliance) within a set

time, and economising on the use of those already owned); the “normative” procedure is

similar but aimed at saving energy rather than money. Which is applied on any one occasion

is determined probabilistically, but each household has its own set of probabilities. In the

simplest case, these are fixed for the duration of a simulation run, and the expected value of

each of the three probabilities concerned is 1/3. However, these expected initial values can

be varied; and values for specific households can also be allowed to change over time as a

result of social contacts.

At the start of a run, pairs of households are socially linked. The initial links are assigned

probabilistically, with spatially closer households being more likely to be linked.

Subsequently, each household has the opportunity each month to initiate either losing or

gaining a link, with equal probability. If a link is to be lost, it will be among those with the

most dissimilar set of possessions (i.e. household appliances); and among those, one of the

most distant spatially. If a link is to be gained, it will be drawn at random from the contacts

of a selected contact – the selection of the intermediary depending primarily on similarity of

possessions, secondarily on spatial proximity. Social contacts will also influence what new

appliances a household buys: whenever a decision is to be made, the possessions of a

randomly selected contact (who is thought of as being “visited” at home) will have an

enhanced chance of being chosen. At the same time, the household may (depending on a

model parameter) adjust its values in the direction of those of that contact.

2.3 Results
The approach taken in the initial stages of exploring the dynamics of this model was:

1) To find as a starting point a set of parameters, which, where they cannot be

constrained by readily available information (as prices and monthly energy use

of appliances can, for example) produce “reasonable” model behaviour:

 Most households acquiring some new appliances but not buying everything

on the market.

 Overall levels of energy use not changing too radically – the secular

movement remaining no greater than the variation between winter and

summer.

 Overall levels of wealth likewise neither increasing nor decreasing too

wildly.

2) Keeping the implementation fixed, and varying parameters systematically

around the starting point, trying single runs of all combinations of a small sets of

alternative values for a subset of parameters, and looking at the effect on a

small number of global output measures, in this case primarily the mean over

time of the overall energy use; secondarily the mean capital reserve (summed

over households); and the number of social contacts.

The starting point parameters give the three “goal-frames” equal treatment in the initial

allocation of characteristics to households. For each household at the start of a run, two

random floating point numbers between 0 and 1 are chosen, and used to divide the unit

11

interval into three (in general unequal) parts and hence generating three probabilities that

sum to 1. These are then assigned at random to the “hedonic”, “gain” and “normative”

decision procedures. Seven further parameter sets are then generated by assigning

minimum probabilities, applied across all households, to one, two, or all three of the

decision procedures. (If all three are assigned the same non-zero minimum probability, the

expected probability assigned to each for each household is 1/3, just as it is if no minima are

assigned; but the variance of probabilities across households will be reduced, i.e. households

will be more alike in their values.) The number of parameter sets was increased to 24 by

varying the availability of credit: a household being able to borrow 0, 5 or 10 times its net

monthly income.

Table 2.1 shows the mean values across time for the total energy use for each of the runs in

this first set. The rows show results for each combination of assigning or not assigning

minimum initial probabilities for the three decision procedures: those for which a minimum

is assigned being in bold underlined font. Columns indicate availability of credit.

Table 2.1. Mean monthly total energy use across households for each of 0, 5 or 10 times net monthly income

(n.m.i) as availability of credit, for different settings of the goal frame parameters.

 No Credit 5 × n.m.i. 10 × n.m.i.
Hedonic Gain Normative 109349 102217 99741
Hedonic Gain Normative 81826 80977 78949
Hedonic Gain Normative 84486 82348 81204
Hedonic Gain Normative 80577 77884 76068
Hedonic Gain Normative 120409 119466 124104
Hedonic Gain Normative 115223 105948 106618
Hedonic Gain Normative 112801 115750 110303
Hedonic Gain Normative 107763 105273 100892

Conditions in which households are more likely to use the “hedonic” decision procedure

have greater energy use, as might be expected. Conversely, greater likelihood of using either

the “gain” or the “normative” decision-procedure tends to reduce energy use. Somewhat

less obviously, when the hedonic procedure is not likely to be used, or when the normative

is likely to be used, greater availability of credit reduces energy use (it does so even when

both hedonic and normative decision procedures are more likely to be used than the gain

decision procedure. Thus, even at a very early stage of investigation using agent-based

models, we saw indications of interesting interactions between external economic

conditions, and the “motivations” or “values” of the household agents. It may be noted that

the same range of parameter sets gave rise to much greater variation in total capital reserve

across agents, with clear (and expected) outcomes that greater hedonism, and greater

availability of credit, gave rise to lower – and in some cases strongly negative – capital

balances, often with a clear declining trend throughout the 144 months of the simulation.

Table 2.2 shows the mean total energy use across a different slice of the parameter space.

Here, no minimum is set for the initial probability assigned to any of the decision

procedures, but the credit limit is varied, and two further parameters are each given two

different values: the monthly net income (this is intended to represent the income available

12

for spending on household energy and energy-using appliances), and a measure of the

number of consumption decisions made per household per month. The italicised cells

indicate parameter sets duplicated from table 1, top row.

Table 2.2. Mean monthly total energy use across households for various availabilities of credit – 0, 5, 10 and 20
times net monthly income (n.m.i.), with different values for monthly net income (m.n.i.) and number of
consumption decisions made per household per month.

m.n.i. Consumption decisions No credit 5 × n.m.i. 10 × n.m.i. 20 × n.m.i.

100 Low 86263 86195 86544 84584
100 Standard 1108521 108513 102025 101197
200 Low 92785 90727 88923 89015
200 Standard 131657 125271 113936 117487

As can be seen more consumption decisions produce greater energy use. The indication

from table 2.1 that greater credit availability decreases energy use is confirmed, but not at

the new, highest level (rightmost column). On the other hand, higher monthly net income

increases energy use. This may seem paradoxical, but a likely explanation is that much credit

is used early on, by households considering long-term savings of money or energy, before

even the richer households have had time to build up capital reserves, to buy condensing

boilers.

2.4 Discussion and conclusion
Agent-based modelling work on the use of land and natural resources is common; work on

demand for centrally distributed services such as power and water is not. Perhaps the work

that is closest to that reported here is the work on water demand described by Edmonds

and Barthelemy (2002), and in much greater detail by Barthelemy (2007). That work, like

this, combined considerations of technological change with spatially-embedded socio-

cultural dynamics. However, the decision- making procedures were very different: agents

influenced each other by exchanging “endorsements”: recommendations of specific rules of

behaviour, which would be more or less influential depending on the relationship between

the two. Households observed all their neighbours, while in ABMED, there must be a social

link between any two households, neighbours or not, before there is behavioural influence

between them.

While technological innovation can reduce the energy requirement for specific activities,

their impact in reducing carbon-intensive energy use will depend critically on broad public

and political commitment to such a reduction. Without such commitment, increases in

energy efficiency may simply raise demand for energy- intensive products and services

either in the same category of energy use.

13

3 Ontology Elicitation
This work was presented to the Third World Congress on Social Simulation 2010 (Polhill et al.

2010).

3.1 Introduction
Each case study area in GILDED has a Stakeholder Advisory Group (SAG) to ensure relevance

of research design and act as a platform for communication between the research team and

the organisations members of the group represent. Scottish SAG members include a

Member of the Scottish Parliament, and representatives from Aberdeen City and

Aberdeenshire regional councils, the Scottish Government and local NGOs. Although the

GILDED project is chiefly aimed at reporting to the EC, results from the models also need to

be relevant to the SAG members. Those collaborators on the GILDED research team who do

not have experience in modelling are also in some sense stakeholders in the model, since

they will have the responsibility of synthesising model outcomes with other findings from

the project when preparing the reports.

Though the resulting model needs to produce output relevant to all its stakeholders, none of

them will be end-users of the modelling software. Neither will they necessarily receive

output directly from the model itself—in the case of the SAG, for example, they are most

likely to receive policy briefs that summarise research findings of which output from any

simulation model will form only a part. Hence participatory modelling approaches

(Ramanath and Gilbert 2004) are not appropriate here, and in any case involve a level of

engagement in the development process that SAG members could not commit to.

Grimm et al.’s (2006, 2010) ‘Overview, Design Concepts and Details’ (ODD) protocol is a

document structure aimed at encouraging authors to write complete descriptions of their

models (to enable replication) in logically ordered manner. The logical ordering of the

information is a possible explanation for why Grimm has subsequently argued that ODD is a

useful way to think about designing and building a model. Though ODD is not universally

adopted as a norm for describing agent-based models in text, its use is growing. ODD divides

the description of a model into the following sections and subsections:

 Overview

o Purpose—what the model is being used for.

o Entities, State Variables and Scales—what is, or could be, contained in a

snapshot of the model at any one time; its ontology.

o Process Overview and Scheduling—brief summary of the dynamics of the

model: how its state changes from one time to another.

 Design Concepts—short summaries of properties the model has under various

headings (most of which pertain to agents’ behavioural capabilities), to facilitate

comparison between models: Emergence, Adaptation, Objectives, Learning,

14

Prediction, Sensing, Interaction, Stochasticity, Collectives, Observation. (Headings

not addressed by a model can be left out of this section.)

 Details

o Initialisation—how the initial state of the model is created.

o Input Data—exogenous time series data driving the behaviour of the

model.

o Submodels—detailed descriptions of the processes outlined in the

Overview section, including algorithms, rules and formulae.

Modellers are used to thinking about the world in a particular way, which enables them to

translate observations into statements in programming languages. We assume here that

ODD is representative of that way of thinking. There are ‘entities’, ‘attributes’ (which ODD

terms ‘state-variables’) and ‘processes’. To these we may add ‘relationships’ (between

entities—in the terminology of object-oriented programming and design this would be

aggregations or looser associations), and ‘drivers’ (exogenous influence on model

behaviour—which in ODD are captured in the Initialisation and Input sections). Though the

main purpose of the ontology elicitation exercise was to ensure the relevance of the

model(s) to collaborators and stakeholders, we were also interested in how non-modellers

respond to the key categories modellers use, and in their reaction to the ordering of

information presented in ODD. We see this as providing two related insights—first, the

extent to which ODD is useful for structuring the knowledge exchange process with

stakeholders and non-modelling collaborators; second, how intuitive (if at all) the way

modellers think about the world is to non-modellers. We are chiefly concerned with the

categories associated with the Overview part of ODD.

3.2 Method

ODD has a certain logic when writing up an agent-based model: How can one discuss what is

in the model until its purpose is clear? How can one discuss the processes that operate in a

model until one has discussed what is in it? How can one decide how to implement these

processes until one has decided the design concepts on which the model will be based?

Likewise, how can one discuss the submodel implementations until the input data and

initialisation are known?

It is interesting to see whether the way ODD breaks down information about a model is

helpful in (at least partially) co-constructing it with stakeholders and non-modelling

collaborators. In particular the way information is structured maps reasonably cleanly onto

different knowledge exchange activities: the Entities, State Variables and Scales, together

with the Process Overview and Scheduling, describe the ontology of the model (in a broad

sense of the term), whilst the Initialisation and Input subsections could be driven in part by

data collection, but also by scenario construction. The Submodels are implementation

details, and though of primary interest to the model developers rather than non-modelling

collaborators or stakeholders, those not involved in modelling may well be interested in the

provenance of the implemented algorithms. The Design Concepts are quite an eclectic mix of

15

headings. Six of them pertain to agent behaviour (Adaptation, Learning, Objectives,

Prediction, Sensing and Interaction), and as such may be of interest to those with a

background in some of the controversies surrounding representation of human decision-

making. Collectives is an ontological matter. Emergence and Observation are scenario or

purpose-driven concepts, depending on what the model is being used to explore.

Stochasticity is a modelling methodology question.

The first workshop (A), with the six non-modelling collaborators (none of whom are SAG

members), was used to try discussing the purpose of the model strictly before its ontology.

The hour and a half-long workshop combined this with the demonstration of a prototype

model (ABMED; Gotts, 2009), which also drew on the ODD protocol to structure the

presentation, as follows:

A.1. Presentation on the context of the model, and the parts of the project it will feed

into.

A.2. Open recorded discussion on what would be relevant or useful to see in the

synthesis workpackage of the project, with a view to eliciting model purpose.

A.3. Participants asked to imagine creating a simulation to address the purpose discussed

in step A.2, and then, “What would you put in the virtual world you would be

creating?” One post-it to be used for each item in the virtual world.

A.4. Structuring the post-its—group discussion.

A.5. Re-organising the post-its into ontological categories.

A.6. Presentation of the prototype model, structured by the ODD protocol.

A.7. Opportunity to reflect.

Based on our experiences with workshop A, we designed a workshop (B) for the SAG (of

whom six were present at the workshop). The agenda for the associated meeting allowed 1

hour 20 minutes for the workshop. This removed any discussion of the purpose of the model

(which is in any case pre-defined in the GILDED project) and concentrated on eliciting an

ontology, with the secondary purpose of ascertaining how intuitive key ontological

categories (entities, attributes, relationships and processes) are:

B.1. Using an icon representing a house as a guide, participants were asked to use post-it

notes to identify “anything associated with household energy use or household

energy activities.”

B.2. Participants then put the post-its on the picture.

B.3. Some discussion of the post-its then took place, and participants were given the

opportunity to add more post-its.

B.4. A demo of the prototype model was given.

16

B.5. The post-its were put onto cards on a table, and participants asked to sort them into

categories that made sense to them.

B.6. The modelling categories were presented (figure 3.1) and participants were asked to

re-sort the cards into these categories. While so doing, participants were asked how

they responded to the modelling categories, and how difficult they were finding the

task.

B.7. Participants were then given an opportunity to add more post-its.

Figure 3.1. Definitions of the modelling categories as presented to the SAG in step B.6. Those of Entities and
Attributes are taken from Grimm et al. (2010).

A third workshop (C), was held with the GILDED project team at the consortium meeting in

Budapest in June 2010. This followed broadly the same structure as workshop B, but

omitted steps B.6 and B.7, and replaced steps B.1 and B.2 with a step in which participants

individually wrote on index cards directly. Step B.5 was split into two steps, as participants

were divided into two groups; they first sorted their own index cards, and then sorted the

index cards of the other group.

C.1. Using an icon representing a house as a guide, participants were asked to write on

index cards “anything associated with household energy use or household energy

activities.”

C.2. A demo of the prototype model was given.

C.3. Participants were divided into two groups, and told to take their index cards to their

group’s location, and arrange the cards belonging to all members of their group into

categories that made sense to them. In so doing, they were given the opportunity to

write new cards.

C.4. The cards’ relative positions in each group were recorded with a camera, and the

groups told to move to the location of the other group, and rearrange their cards.

17

3.3 Results
In workshop A, participants struggled with step A.2, finding the question too open-ended.

The discussion focused on policies and types of intervention associated with household

energy use. Step A.3 proceeded relatively smoothly, though some clarification was needed

on the question. Participants were initially asked what they would put in a simulation aimed

at addressing the policy areas and intervention types in step A.2, but needed to be given a

specific example to get the idea. They chose to limit themselves to 3-5 post-its each, and

produced about 30 of them. One participant suggested model purpose could be discussed as

part of this exercise. In step A.4, restructuring the post-its yielded eight groups. The process,

however, was led by the facilitator—although the participants engaged in the discussion, the

groups were not entirely their own. In step A.5, the modell ing categories proved too

unintuitive for the participants to work with, and we agreed that step A.5 would be

performed by a model developer outside the meeting.

Reaction to the prototype model presentation in step A.6 was also interesting. ABMED is a

relatively simple model, but still required a lot of detail to explain. ODD stipulates a

complete description of everything in the model; consequently there was a lot of

information to take on board during the presentation of the Entities, and this proved

difficult for some to grapple with. However, the presentation did enable the participants to

comment on areas where the model’s behaviour was counter-intuitive, or on missing

phenomena.

Step A.7 was in the end not conducted.

The results of step A.3 were translated by a developer into ontological categories (see figure

3.2). Some post-its required relatively little interpretation, such as ‘Consumers’, ‘Goods’

(clearly entities), and ‘available options’ (clearly a relationship between Consumers and

Consumer Goods—as a modeller, one would expect this relationship to be computed from

attributes such as price, and disposable income). An ambiguous example was ‘Insulation’,

which could be a process (i.e. the action of installing insulation), an entity (the physical

presence of insulation), or an attribute (e.g. of a house, such as its U-value). Other post-its

required more interpretation to create usable ontological categories, such as ‘How does the

policy help or hinder other policies’, which besides the existence of Policies as entities and

relationships ‘help’ and ‘hinder’ between them, also suggests goals or success criteria as

attributes of Policy and processes by which they are compared for conflicts or measured.

18

Figure 3.2. Ontology derived from post-its in Workshop A.

Workshop B, with the SAG, generated more post-its in step B.1 than A.3 in the previous

workshop), though here participants were encouraged to think of as many things as they

could, rather than limiting themselves to 3-5. The post-its were transcribed to index cards

whilst they were given the presentation on ABMED. Once again, ABMED was presented

using ODD to structure the information—the presentation having been modified to present

the entities in the model in a way that did not immediately overwhelm them with all the

details.

The participants spent about 15 minutes categorising the index cards on a table. Though not

specifically asked to do so, they did this as a group. The spatial relationship of some of the

categories was important to the participants, and it was noted that some index cards

belonged in more than one category. Much as for workshop A, an ontology was create d

from the index cards (figure 3.3); some cards again requiring interpretation to represent

their contents. The categories the participants created sometimes suggested superclasses

(e.g. ‘Appliances’ and ‘Energy efficiency measures’), but not always. The category

‘Household context’, for example, is a somewhat abstract concept. The index cards they put

in it, such as ‘Owner occupier’, ‘Private tenant’, ‘Access to finance, time and knowledge’

were not subclasses in the sense that any instance of ‘Owner occupier’ is not an instance of

‘Household context’. The context of a household would instead be a property of it, inferred

from properties of the occupiers.

19

Figure 3.3. Ontology derived from Workshop B.

Whilst sorting the cards into their own categories proved relatively straightforward, when

shown the modelling categories and asked to put the index cards into these, the partici pants

were somewhat flummoxed initially. Clearly the categories were not intuitive, and some

found their definitions circular. They discussed trying to put the categories they had created

earlier into the ontological categories we had given them—perhaps hoping this would make

the exercise easier, as then all cards in a category they had created would (in their view)

belong in the same ontological category. When asked how they were finding this process,

there was general agreement that it was difficult, and that the ontological categories were

quite unlike those they had created. They also noted that which ontological category they

might put a card into depended on its interpretation and how it was written on the card.

One participant remarked that this forced them to think about things in more detail.

Observing that essentially all their cards were entities,2 they decided to pick one example

(‘Car’) and work it through. As they thought about this example, they wrote extra cards for

the attributes, relationships and processes. Although what they wrote for the attributes

(‘age, mileage, fuel economy’) drew on the examples they were given (figure 3.1), one

participant described attributes as the reasons why you would buy the car, suggesting that

to some extent (albeit specifically focused on the example they were working on) they

understood the idea. Participants struggled more with relationships writing ‘no.

cars/household’ and ‘car sharing’. The former as worded could be an attribute of a

household, or interpreted as the ‘owns’ relation. The latter could be translated into a

relation by wording it as ‘shares-car-with’ (a relationship between two people), but this

wouldn’t capture which car was being shared. A modeller would probably create a ‘Car

Share’ concept, with relations to a Car and the People sharing it. The participants

interpreted processes as what the Car is used for, such as commuting (“for work”), accessing

2 However, the ontology created from the index cards by the model developer has data and object
properties interpreted from the cards. For example, the card ‘Gas/off gas’ was interpreted as a data
property of a location.

20

public transport (“to nearest railway station”), leisure activities (“weekend only” and

“leisure”), and “short journeys (e.g. school run)”. Whilst not all these might be included in a

model, their rewording suggests that processes were reasonably well understood by the

participants. This was as far as they got in 15 minutes, though the workshop sche dule

allowed more time for this exercise. It is possible that, having found their own categories,

they were reluctant to break them up, and/or were tired of categorising things by this point.

Workshop C was more successful than workshop B in eliciting ontological elements, though

again, index cards mainly referred to entities rather than attributes relationships or

processes. However, this may be more a feature of the instruction to ‘categorise’ the cards

in steps C.3 and C.4. Step C.4 was an interesting addition to the workshop plan, enabled by

the larger number of participants. Though given the option to accept the categorisation of

their colleagues, each group nevertheless made their own categorisation. While this may

suggest that categorisation is subjective, there were broad similarities in the way cards were

categorised by each of the two groups. Many cards were given exactly the same category

label (e.g. ‘Transport’ or ‘Appliances’), whilst other categories used related vocabulary (e.g.

‘Kitchen’ and ‘Cooking’). Sometimes cards were associated with more specific categories, for

example the ‘Blender’ card was assigned the general category ‘Appliances’ by group 2, whilst

group 1 assigned it the category ‘Cooking’ to associate it more specifically with the task for

which the appliance is used. It would not be correct to say that a blender is not an appliance,

nor to say that it is not used for cooking – the fact of a difference in categorisation thus

suggests a difference of emphasis rather than a fundamental difference of type. The

ontology derived from Workshop C is presented in Figure 3.4.

3.4 Discussion
Various researchers have noted the preference of stakeholders for simpler models. By

contrast, agent-based modellers acknowledge the significance of individual heterogeneity

and the interactions of those individuals. A consequence of the commitment to modelling at

the micro scale is that models contain a lot more detail. That this detail is hard to

communicate is a prime motivation for the creation of ODD.

It is clear from workshops A and B that the volume of representation in ABMs can be difficult

for non-modellers to cope with. ODD’s structuring of the knowledge in the presentation of

the prototype model did enable participants to understand and ask pertinent questions

about the model, even if some of them found all the details somewhat overwhelming. For

co-constructing a model, however, a linear approach adhering to the ODD ordering did not

prove helpful. Nevertheless, an exercise that effectively amounts to a quick ontology

elicitation process was able to produce material from which a formal ontology could be

constructed, albeit that interpretation of the material by the model developer was required

to do so.

In workshop B, we tested the ontological categories, which had also proved difficult for

participants to understand in workshop A. Interestingly, the participants’ own categorisation

expressed something of a concept hierarchy, though the card sorting exercise did not enable

them to fully express themselves—in particular, where a card belonged in more than one of

their identified categories. They found the definitions of the categories circular, but were

21

Figure 3.4. Ontology derived from Workshop C.

beginning to grasp them working through the ‘Car’ example. It is possibly significant that,

realising the detail they had to produce, and seeing the large number of other cards that

22

they identified as being mostly entities, they decided not to work through further examples,

although there was time for them to do so. Agent-based modelling requires more in the way

of details than other modelling approaches, and only the most dedicated and co-operative

stakeholders will be willing to think through all those details.

That respondents did not respond intuitively to the ontological categories may be because

they had first used their own categories, the definitions used (though for attributes and

processes, the group successfully developed their own interpretation), and the time

available).

However, since the modelling process will inevitably involve some translation and

interpretation of the output from participants, it may be better not to involve them directly

in creating utterances in formal languages—at least when the process does not allow time

for educating participants in the implications. If participants are willing, part of the iterative

process of involving them in model development can include checking the inferences that

will be drawn from the formalisation of their post-it notes and categorisation.

By the time workshop C was undertaken, ODD had no bearing on the workshop design

(though arguably the purpose of the workshop was to elicit concepts to include in the

Entities, State Variables and Scales and the Process Overview and Scheduling sections of

ODD), and no reference was made to ontological categories used by modellers.

3.5 Conclusion
The main objective of the exercise was successful, in that both workshops created a context

in which the models can have meaning for the participants, as opposed to a more traditional

situation in which the model developers do everything.

Though it is clear that modellers conceptualise the world in a way that is not intuitive to

everyone, workshop B shows there is potential for non-modelling experts to understand it.

However, such understanding may require an investment of time that cannot always be

afforded, and it may in any case be better for modellers to do the formalisation; checking

the assumptions with stakeholders afterwards.

An ontology covering all three workshops was created, and the concepts and relationships

are shown in figure 3.5. Appendix 2 shows the documentation of the translation of index

cards from all three workshops into ontological categories.

The ontology provides considerable support for the structure of CEDSS, and in particular for

the focus on appliances and space/water heating.

23

Figure 3.5. Ontology combining results from all workshops. Labels with a prefix ‘M’ (for Macaulay) are from

Workshop A, those with a prefix ‘S’ (for Scottish SAG) from workshop B, and the prefix ‘B’ (for Budapest)
denotes workshop C.

24

4 Final Version of CEDSS
We use the ‘Overview, Design concepts and Details’ (ODD) protocol of Grimm et al. (2006,

2010) to describe CEDSS.

4.1 Overview

4.1.1 Purpose

The purpose of CEDSS (Community Energy Demand Social Simulator) is to simulate the

household energy demand of a small rural or urban community (e.g. a housing estate or

village), with respect to energy used for space and water heating, and for appliances, over

the period 2000-2050.

4.1.2 Entities, State Variables and Scales

The entities and relationships among them are summarised in figure 4.1. Reified

relationships (those having data stored about them) are shown in blue boxes.

Figure 4.1. Entities and relationships in the CEDSS model.

The state variables of the entities and reified relationships are summarised in the following

tables.

25

Table 4.1. Households

State variable Type Description

household-id string An identifier for the household
household-type string A descriptor for the type of the household (e.g. demographic

type/class)
planning-
horizon

integer How far the household looks ahead when computing
projected running and energy costs of appliances.

steply-net-
income

double How much income the household receives per step (one step
could represent a month, or a quarter, depending on the
model configuration).

capital-reserve double How much money the household has in, e.g. savings.
goal-frame string The goal frame the household is currently using to make

decisions.
frame-
adjustment

double Adjustment parameter for values when the household is
influenced by their peers.

gain-
orientation

double A representation of the household’s egoistic value.

greenness double A representation of the household’s biospheric value.
hedonism double A representation of the household’s hedonic value.
steps-total-
energy-use

double How much energy the household has used in this step.

usage-mode string A descriptor for the way in which households are using
appliances (e.g. economising).

breakdown-list Appliances A record of the broken appliances that the household has
not yet replaced.

wish-list Appliances A list of appliances that the household desires.

Table 4.2. Dwellings

State variable Type Description

dwelling-id string An identifier for the dwelling.
dwelling-type string A descriptor for the type of dwelling (e.g. four-bedroom detached

house, one-bedroom flat)
tenure string The type of tenure – e.g. owner-occupied, or rented.

Table 4.3. Insulations

State variable Type Description

insulation-state string A descriptor for the state of the insulation (e.g. 270mm
glass-fibre loft insulation).

fuel-use-factor double How the space/water heating fuel use is adjusted by
installing this insulation.

insulation-dwelling-
type

string The dwelling type the insulation can be applied to.

26

Table 4.4. Appliances

State variable Type Description

category string A high level category for the appliance (e.g. TV).
subcategory string A subcategory for the appliance (e.g. LCD TV, CRT TV,

plasma TV).
name string The identifier for the appliance (make and model).
cost-list double List of purchase costs for the appliance in each step for

which it is available.
breakdown-
probability

double Probability the appliance will break down in any step.

embodied-energy double Energy associated with the manufacture and delivery of
the appliance.

energy-rating string Energy rating for the appliance.
energy-rating-
provided?

Boolean Whether the energy rating has been provided.

essential? Boolean Is the appliance essential for all households?
hedonic-score double A number reflecting the degree to which the appliance

activates the hedonic value when it is bought.
last-step-available integer Last step in which the appliance is available, if this is

bounded.
last-step-available-
unbounded?

Boolean True if the appliance does not have a last step in which it
is available.

Table 4.5. Consumption-patterns

State variable Type Description
for-dwelling-type string Dwelling type with which the consumption pattern is

associated
for-household-
type

string Household type with which the consumption pattern is
associated

for-purpose string Purpose with which the consumption pattern is associated.
for-tenure-type string Tenure with which the consumption pattern is associated.
in-step integer Time of year with which the consumption pattern is

associated.
in-usage-mode string Usage mode with which the consumption pattern is

associated.

Table 4.6. Fuels

State variable Type Description

fuel-type string Type of fuel.
kwh-per-unit double kWh used per unit of fuel.
total-kwh double Total kWh of this fuel used by all households (for observation

purposes).
unit string Label for the unit of the fuel.

27

Table 4.7. Upgrades

State variable Type Description

upgrade-cost double Cost of making the insulation upgrade.

Table 4.8. Social-links

State variable Type Description

n-visits integer Number of visits that have been made by the ‘from’ household to
the ‘to’ household.

Table 4.9. Ownerships

State variable Type Description
age integer How many steps the household has owned the appliance.
broken? Boolean Whether the appliance is broken.

Table 4.10. Uses

State variable Type Description
units-per-use double How many units of the fuel the consumption pattern uses.

4.1.3 Process Overview and Scheduling

The model does the following in each time step:

1. Decide which owned appliances break down.

2. Transition household state – this simulates changes in demographics (e.g. having

children or retiring) and in/out migration from the community.

3. Each household then does the following:

a. Choose goal frame.

b. Adjust goal frame.

c. Choose usage mode.

d. Compute the total energy use for this step from using appliances and

space/water heating.

e. Compute financial situation.

f. Replace broken appliances.

g. Update wish list (if goal frame is ‘hedonic’ only).

h. Buy insulation (if goal frame is not ‘hedonic’).

i. Buy new appliances.

j. Visit social neighbours.

k. Update social links.

4.2 Design Concepts
Basic Principles

The model is based on the psychological theory of ‘goal frames’ (Lindenberg and Steg 2007),

in which households make decisions in one of three modes: ‘hedonistic’, ‘egoistic’ and

28

‘biospheric’; which mode they choose depends on their ‘values’: stored parame ters

representing ‘hedonism’, ‘gain-orientation’ and ‘greenness’.

Emergence

Emergent properties of the model are the community-level consumption of energy from

various sources, and the numbers of different appliances owned.

Objectives

Households must ensure they keep essential equipment running, otherwise, households’

objectives depend on their dominant goal frame. Hedonists aim to buy as many of their

desired appliances as they can afford, egoists aim to save as much money as they can, whilst

biospherics aim to minimise their energy consumption.

Prediction

Households may compute the expected running costs and space heating costs when buying

appliances and considering insulation options, depending on the mode in which they are

making decisions.

Sensing

Households are aware of appliances owned by their friends when they visit them.

Interaction

Households visit each other, according to their social -links. They adapt their social-links

according to how similar their profile of appliances is with that of the people they visit. The

profile of appliances is used as a proxy for lifestyle characteristics in the model, and the

assumption is made that people are more likely to be friends with those having similar

lifestyles.

Stochasticity

Stochasticity is used in setting up and updating social-links, and may also be used in setting

households’ goal frame parameters. It is used in determining exactly when an appliance will

break down, and in determining timings of household transitions, if a run of CEDSS makes

use of these.

Observation

The model collects data on energy use (broken down by fuel), how much money households

have, how many social links they have, how many of each category of appliance are owned

by households in the community, how many of each category of appli ances have been

thrown away by the community, goal frames used to make decisions, goal frame

parameters, and numbers of visits made per social link.

29

4.3 Details

4.3.1 Initialisation

Initialisation of CEDSS is achieved by loading in a series of files. These are described in detail

elsewhere in the report, but are covered briefly here in the order in which they are loaded

during initialisation:

1. Maximum in category file. This specifies, for each category of appliance, the

maximum number of appliances that a household can own.

2. Insulation file. This contains data on the insulation state, fuel use factor and

insulation dwelling type for each insulation.

3. Insulation upgrade file. This contains cost data used to create the upgrades links.

4. Patch legend file. This specifies the colour to use for each type of patch.

5. Patch layout file. This specifies the type of each patch in the space.

6. Dwellings file. The dwellings file specifies the type of each dwelling, its tenure and its

initial insulation state. After the dwellings file is loaded in, ‘blocks’ of dwellings are

identified.

7. Fuel file. This creates the fuels, and initialises their type, unit and kWh per unit.

8. Usage mode matrix file. This specifies the conditions under which each goal frame

has a particular usage mode.

9. Appliances file. Initialises the name, category, subcategory, whether the appliance is

essential, hedonic score, cost list, energy rating, embodied energy, breakdown

probability, first and last step available of each appliance.

10. Appliances replacements file. This is used to initialise the replacements link breeds.

11. Appliances fuel use file. Initialises the consumption patterns.

12. Initial appliances file. This is used to create initial appliances owned by particular

households, types of households, or households living in particular dwelling types.

13. Households file. Initialises the identifier, type, income, capital reserve, goal frame

parameters, goal frame adjustment parameters, planning horizon and dwelling of

the household.

14. Household transition matrix file. If used, this specifies the probabilities of

households changing type each time step. To ‘not use it’, the matrix file can simply

consist of an identity matrix indicating a probability of 1 for transitioning from each

household type to itself, and a 0 for all other transitions.

15. Social link matrix file. If used, this file specifies the probability of making a social link

between households and dwellings of different types.

16. Social link file. If used, this file allows a social network to be set up among specific

households.

4.3.2 Input

The model has a number of time-series data that are used to implement scenario storylines

during the course of a model run. These data are loaded from files into global data

structures during initialisation.

1. Insulation update file. This contains data used to update the set of insulation

upgrades that are available during the course of the run.

30

2. Suppliers file. This contains data about the suppliers for each type of fuel, and its

price per unit at each time step.

3. Appliances file. Much of the data in the appliance file, mentioned earlier under

initialisation, is input rather than initialisation data. In particular, the cost list

specifies the price of the appliance in each time step for which it is available, and the

first and last time step available are also time series data.

4. Households file. The households file also contains time series data pertaining to

income.

5. In-migrant household file. If used, this can be used to implement new household

parameters for given household transitions, and simulate changing attitudes and

values as part of the scenario.

4.3.3 Submodels

1. Decide which owned appliances break down.

All ownership links between households and appliances are checked against the appliances’

breakdown probabilities. For each link, if the breakdown probability of the appliance is more

than a random number in the range 0 to 1, then the broken? flag on the ownership link is set

to true.

2. Transition household state.

Each household looks up the transition probabilities for its type in the household transition

matrix. A random number between 0 and 1 is chosen, and the transition probabilities

summed to form an ascending series. The position of the random number relative to the

series determines the new state of the household. If the random number is more than the

last number in the series, then no transition takes place.

3a. Choose goal frame.

The goal frame is chosen by choosing a random number R in the range 0 to the sum of the

goal frame parameters (hedonism, gain-orientation and greenness). The selection of goal

frame is then made thus:

R < hedonism hedonistic
R < hedonism + gain-orientation egoistic
Otherwise biospheric

3b. Adjust goal frame.

Adjustment of the goal frame is done to implement a ‘habit’ component – the more a goal

frame is used, the more likely it is to be used in future. The habit-adjustment-factor

parameter (H) is used to make this adjustment. If T is the sum of all goal frame parameters,

then let A be the parameter corresponding to the selected goal frame, and B and C be the

other two. A is increased by H, and B and C decreased by H / 2. If the result causes A to be

more than T, then adjustments are made to ensure that A + B + C = T, and that B and C ≥ 0.

The algorithm is provided below:

31

A = A + H

If A > T Then A = T; B = C = 0

Else

B = B – H/2

C = C – H/2

If B < 0 Then C = T – A; B = 0

Else If C < 0 Then B = T – A; C = 0

3c. Choose usage mode.

The usage mode of the household is chosen using the usage mode matrix file as a guide. This

specifies conditions under which a usage mode can be selected. Currently the only condition

implemented is if the household has a negative capital -reserve. This allows usage modes to

be defined for when the capital-reserve is negative, and when it is not negative.

3d. Compute the total energy use for this step from using appliances and space/water

heating.

For each appliance owned by the household, the step’s fuel consumption and energy use is

computed based on the consumption pattern associated with the household’s type, the type

of their dwelling, the usage mode, and the time of year.

3e. Compute financial situation.

The energy cost of running the appliances is deducted from the capital -reserve of the

household, and the income for that step is added.

3f. Replace broken appliances.

If the appliance is essential and the household only had one of them before it broke, then a

new item will be bought using a method relevant to the current goal frame of the household

and the tenure of their dwelling thus:

Table 4.11. Essential appliance replacement methods for different contexts.

Context Essential appliance replacement method

tenure is rented or
goal frame hedonistic

Choose the cheapest replacement

goal frame is egoistic Choose a random replacement
goal frame is
biospheric

Choose a random replacement among those with the best energy
rating (if this is supplied) or the lowest breakdown probability if the
energy rating is not supplied

The justification for biospheric mode decision makers knowing the breakdown probability is

that such households are assumed to do research when buying an appliance.

32

Otherwise, if the appliance is not essential, it is added to the breakdown-list of the

household.

3g. Update wish list (if goal frame is ‘hedonic’ only).

The wish list of the household is updated to contain items chosen in all of the following

three ways:

 Up to N appliances (not to do with heating) each belonging to a different new

subcategory introduced in the last N steps.

 One random item not already owned from V visits.

 One random replacement for an item more than T steps old.

Here, N corresponds to the global new-subcategory-appliances-per-step parameter, V to the

global visits-per-step parameter, and T to the old-product-steps parameter. These three

parameters are set on the CEDSS interface.

3h. Buy insulation (if goal frame is not ‘hedonic’).

Insulation is bought using a method specific to the selected goal frame. If the goal frame is

egoistic, then the household chooses an insulation state reachable from the current state

that will save the most money and make a positive monetary saving over the planning

horizon of the household. If the goal frame is biospheric, then the household chooses an

insulation state reachable from the current state that will leave a positive capital reserve

and save the most energy.

3i. Buy new appliances.

New appliances are bought in a different way depending on the goal frame:

Table 4.12. New appliance purchase methods for different household goal frames.

Goal
frame

New appliance purchase method

hedonistic Buy as many affordable appliances as possible from the union of the
breakdown list and the wish list (in descending order of hedonic score), but not
more than one from the same category. An affordable appliance is one the cost
of which is less than the capital reserve plus the household’s income this step
multiplied by the credit-multiple-limit parameter.

egoistic Choose the cheapest replacement for an item on the breakdown list.
biospheric Choose the item with the best energy rating (if supplied) or lowest breakdown

probability (if not) that is a replacement for an item on the breakdown list.

3j. Visit social neighbours.

Up to V (= visits-per-step) randomly chosen social links may be visited each step (it will be

less than V only in the event that the household has no social links). For each visit, the

household adjusts their goal frame parameters; if the reciprocal -adjustment parameter is set

to true, then the visited household also adjusts their parameters. Each goal frame parameter

33

G is adjusted in the following way: let Gi be the goal frame parameter of the household

making the adjustment; let Gj be that of the other household; then:

 Gi = Gi + F(Gj – Gi)

where F is the frame-adjustment parameter, set on the CEDSS interface. After this, if Gi is

less than zero, Gi = 0.

3k. Update social links.

With probability 0.5 either way, the household either loses or gains a social link. (If the

choice is made to lose a link, then this only happens if there is a link to lose; if the choice is

made to gain a link, and the household already has max-links social links, where max-links is

a parameter set on the CEDSS interface, then no link will be gained.)

To lose a social-link, the household first determines the set of weak contacts – those with

minimum appliance similarity. If this set has more than one member, then the set is reduced

to those who have the maximum block distance from the household. If the set still has more

than one member, then the link dropped will be randomly chosen from those the household

has visited least.

To gain a social link, the household determines the set of strong contacts – those with

maximum appliance similarity. One of these is randomly chosen, and an attempt made to

find one of their social links that the household is not already connected to. If such a

household exists, then it will be selected as a new social link; if more than one such

household exists, then one of them will be chosen at random.

Appliance similarity is computed as the count of the number of appliances the two

households have in common, minus the number of appliances that one has that the other

does not.

Block distance is computed as the absolute difference in the X co-ordinates of the two

dwellings, plus the absolute difference in the Y co-ordinates of the two dwellings.

34

5 Ontology Export from Netlogo
Semantic differences between classical object-oriented programming languages and

description logics have been highlighted by Polhill and Gotts (2009), with reference to

Lalonde and Pugh’s (1991) distinctions among the three inheritance relations subtype,

subclass and is-a. Of these three, the first is for compiler convenience in checking types

involved in operations, the second for programmer convenience in facilitating code re-use,

whilst the third reflects descriptive, logical meanings that are of primary interest from an

ontological point of view. These differences mean that direct ontology learning from model

source code is not possible in object-oriented programming languages.

Netlogo models do not have these issues because Netlogo is not an object-oriented

programming language, and hence there is no inheritance among the language’s main entity

(‘agent’ in Netlogo terminology) types, which are known as ‘breeds’. The facility for explicit

representation of relationships (or ‘links’) among agents, rather than encapsulating

associations in classes as in object-oriented languages, further contributes to enabling

automatic ontology learning from Netlogo model code, though it imposes a programming

style in which important relationships among agents are represented as links. Mapping from

breeds to ontological classes also encourages model developers to make greater use of

breeds for model entities than otherwise they might. An ‘agent’ might be normally thought

of as something that undertakes an action, a conceptualisation that tends to oppose the

representation of inanimate entities as agents as is required to automatical ly extract an

ontology from Netlogo source code.

Netlogo’s extension facility enables software to be written that provides functionality from

within Netlogo to automatically extract an OWL ontology from the model. The mapping is

shown in table 5.1.

Table 5.1. Mapping from Netlogo syntax to OWL ontology types.

Netlogo
syntax

OWL type(s) Comments

breed Class Breeds in Netlogo are not necessarily disjoint – agents
can change breed using the set breed command.

directed-link-
breed (no
‘own’)

ObjectProperty For all link breeds, there is no syntax to constrain the
breeds of agent that are at either end of the link,
meaning that domains and ranges for links cannot be
inferred from the code. If the link breed does not have
any of its ‘own’ variables, it can be declared directly as
an object property…

directed-link-
breed (with
‘own’)

Class and
ObjectProperty

…otherwise the link must be reified, and two object
properties used to link the breeds that can be
connected in this way. The object property going in to
the class representing the property can be declared
inverse functional; the object property going out can
be declared functional. A property chain can be used
to represent the link as a whole if the ontology is in

35

Netlogo
syntax

OWL type(s) Comments

OWL 2.
undirected-
link-breed

ObjectProperty or
Class and
ObjectProperty

In addition to the points applying to directed link
breeds, object properties corresponding to undirected
link breeds (in the case of reified links, this will apply
to the chain) can be declared symmetric in OWL. If the
ontology is in OWL 2, all links can be declared as
irreflexive as Netlogo does not permit an agent to link
to itself.

breeds-own DataProperty The domain of the data property can be declared to be
the class corresponding to the breed. Note that
different breeds can have the same variable.

link-breeds-
own

DataProperty The domain of the data property can be declared to be
the class corresponding to the link breed. Note that
different link breeds can have the same variable, but a
variable cannot be shared between link breeds and
breeds.

agent Individual Agents in Netlogo can be asserted as individuals, and
members of the class corresponding to the breed of
which they are currently a member.

The ‘owl’ extension to Netlogo was written for the GILDED project to implement the above.

The extension is written for Netlogo 5.0, and consists of the file owl.jar. This, together with

version 3.1.0 of the OWL-API (http://owlapi.sourceforge.net/), which is available under the

GNU Library General Public Licence, should be placed in a subdirectory named ‘owl’ of the

directory in which the .nlogo file using the owl extension is located. The file ‘owl.zip’ – the

release version of the extension, contains owl.jar and the OWL-API, ready for use. To

permanently install the extension, put it in the extensions folder of the Netlogo applications

directory.

5.1 Usage

The extension makes available a number of commands to a Netlogo model containing the

following command (typically, near the beginning of the code):

extensions [owl]

The commands are given in approximate order in which they must occur during execution of

the model. Specifically, owl:domain, owl:range and owl:imports cannot be used after

owl:model, and owl:structure and owl:state may only be used after owl:model.

The commands assume a distinction between the structure and the state of the model and

corresponding ontologies. An ontology describing the structure of a model consists of

terminology (T-box) axioms describing the kinds of entity that the model contains (OWL

classes), properties they have (OWL data properties) and relationships they may have with

other types of entity (OWL object properties). By contrast, an ontology describing the state

of a model applies to a particular snapshot of an instance of it running at one time. The state

ontology imports the structure ontology, and then adds assertion (A-box) axioms about the

http://owlapi.sourceforge.net/

36

specific instances of the various classes of entity that exist in the model when the snapshot

is taken.

5.1.1 owl:domain link-breed breed

The owl:domain command takes two arguments. The first is the (string) name of a link-

breed, and the second is the (string) name of a breed. The command causes an assertion to

be made in the ontology that the OWL class corresponding to the breed is in the domain of

the OWL object property corresponding to the link-breed.

This command will not affect your model (that is to say, while the model runs, no check will

be made for the link-breed that only agents of the specified breed are in the domain of the

link-breed.

5.1.2 owl:range link-breed breed

The owl:range command takes two arguments. The first is the (string) name of a link-breed,

and the second is the (string) name of a breed. The command causes an assertion to be

made in the ontology that the OWL class corresponding to the breed is in the range of the

OWL object property corresponding to the link-breed.

Just as for owl:domain, owl:range does not cause any checks to be made while the model

runs that only agents of the specified breed are in the range of the link-breed.

5.1.3 owl:imports IRI…

The argument(s) to the owl:imports command are strings containing Internationalised

Resource Identifiers for ontologies that the model structure ontology is to import. Again, this

does not affect the model in any way, or cause any checks to be made, but allows the

ontology to be created with the imports in place ready for use with ontology visualisation,

reasoning and analysis tools.

5.1.4 owl:model IRI

Define the Internationalised Resource Identifier for the model structure ontology, which is

contained in the string argument. All ontologies have an IRI, which constitutes an identifier

for the ontology.

As stated above, all owl:domain, owl:range and owl:imports commands must execute before

owl:model is executed, and no owl:structure or owl:state command may execute until

owl:model has executed.

5.1.5 owl:structure file-name

Save a model structure ontology to the file name given as arguments.

5.1.6 owl:state file-name time-step [extension] (experimental)

Save an ontology of the current state of the model to the file name. The logical IRI for the

state ontology will be constructed from the model IRI specified by the earlier owl:model

command, the time-step given as second argument to this command, and, if given the

extension string. Specifically, any .owl suffix will be removed from the model IRI, and then a

dash (-) appended, followed by the time-step, followed by the extension string if given,

followed by the .owl suffix if the model IRI had it originally.

37

For example, the model IRI “http://www.gildedeu.org/ontologies/CEDSS-3.3.owl” given the

arguments 125 for the time-step and “run3” for the extension, would produce a state

ontology IRI “http://www.gildedeu.org/ontologies/CEDSS-3.3-125run3.owl”

This is an experimental command, as NetLogo documentation about accessing the state of

the model from within an extension was not available at the time the extension was written.

5.2 Example
The following procedure demonstrates the use of some of the above ontology features to

save a structure ontology from CEDSS:

Figure 5.1. Example procedure to extract a structure ontology from CEDSS.

Using the OntoViz plug-in for Protégé 3, a DOT graph can be created of the resulting

ontology, which (with some minor editing to simplify the text and highlight reified link-

breeds in blue) is shown in figure 5.2 on the following page.

38

Figure 5.2. Ontology extracted from CEDSS visualised with OntoViz.

39

6 Data collection, and Implementation of the CEDSS Model
The process for updating ABMED to make a model that could use real-world data consisted

chiefly in allowing the model to work with several input files, and to add functionality that

enabled the exploration of certain aspects of scenarios, in particular home insulation, which

is of considerable importance in determining total domestic energy demand.

It must be admitted that the effort required for data collection of the agent-based model for

GILDED were considerably underestimated. So far as is known, no such model of household

energy demand at community level has previously been designed and implemented, so we

had no good precedents to draw on. It was intended that most of the necessary data would

be derived from the questionnaire and carbon calculator surveys undertaken in

workpackages 3 and 4, and these did indeed provide essential information. However, the

need to keep these research tools to a length that subjects would be willing to complete,

while satisfying the data requirements of those workpackages, limited the amount of data

relevant to CEDSS that could be gathered. Moreover, the importance of issues relating to

household appliances revealed by the knowledge elicitation exercises described above,

necessitated gathering data about appliances that would not be available from the

households themselves, and that turned out not to be readily available at all. In order to

make the collection of adequate data feasible, it was decided that the model should focus

on direct energy demand (for electricity, gas and other fuels) in the home; and it became

clear during the process of model-building that it would not be feasible, within the resources

available to GILDED, to extend the model to cover more than the Scottish case-study area.

Since the model was intended to simulate the process of change in household energy

demand over time, in scenarios reaching to 2050, it was decided to test it by setting it up to

represent the evolution of a village or urban neighbourhood over a period leading up to the

point in the second quarter of 2010 when the first GILDED survey, including a questionnaire

and carbon calculator, was distributed, completed, and collected. However, this presented

considerable problems. The questionnaire and carbon calculator mainly asked questions

about current energy-using equipment and energy-conserving insulation (some questions

were asked about the age of equipment, but these were asked purely in order to calculate

likely current energy requirements). No questions were asked about how purchasing

decisions were made, but such decisions were central to the model. It was therefore

necessary to combine the information from the questionnaire and carbon calculator with

data from a range of publicly available sources about changes over time in the availability

and ownership of relevant equipment. The survey's sample of households from Aberdeen

city and Aberdeenshire was divided into "urban" (Aberdeen City – 197 households once a

number with vital data missing were excluded) and "rural" (Aberdeenshire – 200

households) subsamples, both because possible differences between the populations of

these areas was one of the topics GILDED was to investigate, and for the purposes of

calibration and validation. This section focuses on the urban subsample, and the model

parameters constructed using it as a basis – although many of the parameter files described

were shared with the corresponding rural parameter set, and those that were not shared

40

were constructed in a parallel fashion. The names of those parameter files that differ

between the urban and rural models are followed in the subsection headings by "(urban)".

After a preliminary investigation of the available data sources, it was determined that it was

feasible, although by no means easy, to "retrodict" aspects of the survey households'

dwellings and energy-using appliances as they might plausibly have been at the start of

2000. If running the model forward to mid-2010 then gave energy demands reasonably close

to the figures derived from the survey, we could have sufficient confidence in the model to

extend such runs to 2050 with a reasonable expectation of getting meaningful and useful

results. The current section describes those aspects of the model that could be based, to

varying extents, on the 2010 survey data, and a range of publicly available data sources; and

how those sources were used. The processes of calibrating those aspects of the model that

could not be based on data in this way, and of validating that the calibrated model was

satisfactory, is described in the next section; and its use in scenarios to 2050 in the next but

one. It is worth noting that the model has capabilities which have not yet been used, mostly

concerned with demographic processes; these capabilities rely on further input files, which

are briefly described in section 9, on future work.

A wide range of such sources was consulted, but the most important of those used directly

in constructing the CEDSS parameter files were as follows:

 UK Department of Energy and Climate Change (DECC) time series of prices for

domestic electricity, gas and heating oil (taken from files qep413.xls, qep551.xls and

qep591.xls).

 United Kingdom Department of Energy and Climate Change's Great Britain's Housing
Energy Fact File 2011. (Palmer and Cooper 2011).

 UK Office for National Statistics (ONS) "Family Spending" series (officially known first

as the Family Expenditure Survey, then as the Expenditure and Food Survey, then as

the Living Costs and Food Survey). These were used for the estimates of spending on

fuels, household appliances, and household maintenance and repair, by each gross

income decile of the UK household income distribution, over the period 2000-2010;

and the percentage of households with washing machines, tumble dryers and

dishwashers in 2000 and 2010.

 The Institute for Financial Studies working Paper 02/21, The Distribution of Financial

Wealth in the UK: Evidence from 2000 BHPS Data (Banks, Smith and Wakefield

2002). This was used for figures on the net wealth of the UK population by income

quintile in 2000.

 Argos catalogues, 2000-2010. Argos is a UK retailer, selling a wide variety of

household appliances. CEDSS requires a list of appliances offered for sale, with

prices and (where they exist) energy efficiency ratings, for each quarter-year

covered by a run. Such information was by no means easy to acquire: repeated

enquiries to retailers elicited no assistance. Eventually, a source was found at the

Victoria and Albert Museum in London.

41

The details of how the sources listed were used are given below, where the construction of

each of the parameter files for CEDSS is described. Further sources of lesser importance are

mentioned in relation to the files to which they were relevant.

The following subsections detail the structure of the input files constructed and then largely

held constant (with exceptions described in section 7) during calibration, and how the

versions of these files used in calibration were constructed.

6.1 Household file (urban)

This can be regarded as the key input file, in relation to which other files were constructed.

The household file allocates initial households and their parameters to each dwelling. It has

a heading row indicating the columns, which may be in any order. The following columns are

required: id, type, income, capital, hedonism, gain, norm, frame, planning, dwelling. Of

these, capital, hedonism, gain, norm, frame, and planning are expected to be numeric;

income is expected to be a list of one or more numbers; dwelling is expected to contain the

identifier of an existing dwelling to allocate the household to (see the description of the

dwellings file below) and type is provided to allow for households to be assigned

demographic characteristics Income is intended to represent quarterly household income

available for spending on domestic energy, energy-using appliances, and in the case of

owner-occupiers, replacement heating systems, and insulation, while capital represents the

net monetary wealth available to a household at the start of a model run. The remaining

fields represent decision-making characteristics of the household. The first three,

"hedonism", "gain" and "norm" represented the extent to which three different types of

value described in the "Outline Description of CEDSS" subsection of the Introduction guide

the household's decision-making: hedonistic values (focused on comfort and enjoyment),

"egoistic" values (focused on gaining and keeping resources, and in this context, specifically

saving money), and "biospheric" values (care for the environment). The "frame" field

governs the extent to which these values are subject to change through social contacts, and

the "planning" field the time horizon over which the household calculates savings of money

or energy use when considering improving insulation or installing a new heating system.

Below are the first few lines of the urban household file used in the calibration runs:

id,type,dwelling,income,capital,hedonism,gain,norm,frame,planning

hhu-29,household,dwu-29,[322 322 322 322 295 295 295 295 295 295 295 295 312

312 312 312 280 280 280 280 296 296 296 296 322 322 322 322 341 341 341 341

350 350 350 350 429 429 429 429 429 429],341,3.790019416,1.714560112,

0.884983635,0.2,20

hhu-42,household,dwu-42,[363 363 363 363 332 332 332 332 332 332 332 332 302

302 302 302 359 359 359 359 360 360 360 360 341 341 341 341 428 428 428 428

439 439 439 439 441 441 441 441 441 441],8925,4.732196171,3.968977439,

0.264718996,0.2,20

hhu-46,household,dwu-46,[212 212 212 212 212 212 212 212 212 212 212 212 202

202 202 202 233 233 233 233 211 211 211 211 230 230 230 230 251 251 251 251

256 256 256 256 313 313 313 313 313 313],1,0.184920598,4.588994936,

0.03211146,0.2,20

hhu-51,household,dwu-51,[322 322 322 322 295 295 295 295 295 295 295 295 312

312 312 312 280 280 280 280 296 296 296 296 322 322 322 322 341 341 341 341

350 350 350 350 429 429 429 429 429 429],341,2.46654544,3.051400624,

42

0.925957717,0.2,20

...

The "id" field in each line identifies a specific (but anonymised) urban household

(households are identified as urban or rural in the dataset) in the dataset from the GILDED

2010 questionnaire and carbon calculator. In the work reported here, different types of

household were not used; instead, all households were treated as "average" households for

the purposes of calculating energy demand for water-heating, the only point in the model -

and in the document used to calculate emissions in the GILDED 2010 and 2011 surveys of

households in Aberdeen City and Aberdeenshire (Department of Energy and Climate Change

2009) at which household size made a difference. For income figures over the entire period,

we began with the questionnaire figures for "monthly household income after taxes", which

divided the survey households into 11 bands. These bands corresponded reasonably well

with the income deciles in table A6 of the UK Office for National Statistics (ONS) 2010 Living

Costs and Food Survey (Horsfield 2011), once the eighth and ninth questionnaire bands were

amalgamated: the top row in table 6.1 below. It must be recognised that the

correspondence is not exact, particularly given the different basis for the figures, but given

the sources of uncertainty in both figures, it was considered good enough.

Table 6.1: Lower bounds of Horsefield (2011) 4-weekly gross income deciles compared with those of monthly
household income after taxes from GILDED 2010 survey

ONS
decile 1 2 3 4 5 6 7 8 9 10

ONS
lower

bound 0 640 952 1260 1652 2088 2604 3204 4060 5472
GILDED

lower
bound 0 444 888 1332 1776 2220 2664

3109
3554 3998 4442

Tables in Horsfield (2011) and corresponding ONS reports for earlier years, back to 2000,

provide the mean weekly household expenditure on "electricity, gas and other fuels",

"household appliances", "TV, videos and computers" and "maintenance and repair of

dwelling" for each gross income decile; multiplying these figures by 13 gave a mean

quarterly spend under each of these headings. It was assumed that the quarterly total of the

first three of these four categories gave a reasonable estimate of the money households in

the corresponding survey bands would have had to spend on domestic energy and energy-

related equipment per quarter for each calendar year of the period covered in the

calibration runs (from the start of 2000 to midway through 2010) if renting their dwelling;

and this amount plus the average quarterly spend on "maintenance and repair of dwelling"

for owner-occupier households. Again, it must be recognised that this procedure gives only a

rough approximation, but in the absence of data on the actual income available for these

areas of spending for the survey households over the decade preceding the survey, is the

best that could be done. As described in section 7, we experimented with varying these

figures during the calibration process.

43

Figures for capital are perhaps even rougher. They were drawn from an Institute for Fiscal

Studies report on the distribution of financial wealth in 2000 (Banks, Smith and Wakefield

2002), which in Table A4 gives figures for the distribution of net financial wealth in the UK

for each quintile of the income distribution. Taking all the households in the urban

subsample and grouping the deciles already defined into quintiles, 1/4 of them were

assigned the Banks Smith and Wakefield (2002) 25th percentile of net wealth for the

corresponding quintile, 1/2 were assigned the median figure, and 1/4 the 75th percentile.

For the remaining fields, we had in effect no real-world data: while we might have used

some of the questions on values and attitudes to assign relative strengths to the

"hedonism", "norm" and "gain" fields, the Scottish sample showed no statistically significant

relationship between answers to these questions, and energy demand. We therefore tried a

range of different possibilities for these, and for the "frame" and "planning" fields, as

described below.

6.2 Dwellings file (urban)

The dwellings file gives properties of the dwelling of each household (empty dwellings can

also exist, but are not used in the model runs reported here). The file should have a heading

row, with the following headings specified in any order: “id”, “tenure”, “type”, “insulation”.

There is then one row for each dwelling, where the entry in the “id” column corresponds to

the dwelling-id in the patch file. The set of tenure types will be inferred from this file, and is

expected to be consistent with all other files where tenure is mentioned. Entries in the

insulation column should correspond to entries in the insulation file. Here are the first few

lines of the file used in the calibration runs:

id,tenure,type,insulation

dwu-29,owned,house-semi-solid-3,minimum

dwu-42,owned,flat-non-top-solid-1,dg-loft100

dwu-46,owned,flat-top-solid-1,dg-loft100

dwu-51,owned,flat-non-top-cavity-2,loft100

...

The set of dwelling-types used was taken from those in the GILDED carbon calculator, and

the types were assigned to individual households on the basis of their survey responses. The

main types are as follows:

 Bungalow (detached)

 Bungalow (semi-detached)

 House (detached)

 House (semi-detached)

 House (end-terrace)

 House (mid-terrace)

 Flat (top-floor)

 Flat (non top-floor)

Each of these main types is subdivided according to the number of bedrooms (1, 2, 3, 4, 5, 6

or more), and by whether the external walls are solid, or have an internal cavity that is or

44

could be filled to improve insulation. Tenure was either “owned” or “rented”, again taken

from survey responses. The dwelling type and tenure were assumed to have remained the

same since 2000.

The 12 possible insulation-states were constructed from three components: whether or not

there was double-glazing, whether loft insulation was present and if so whether it was

100mm or 270mm thick, and whether there was wall insulation. There were some

complications: flats other than top flats were assumed to be partially insulated from above

by the flat above them, taken to be equivalent to 100mm of loft insulation; the cost and

effect of wall insulation differed as between houses with solid and cavity walls, and tenants

and those living in flats were assumed not to be in a position to improve their dwelling's

insulation. The combination of dwelling type and insulation state is used in the model to

calculate “useful energy demand” for space heating.

With regard to insulation-state, it was not reasonable to assume that there had been no

change since 2000; we knew that there has been considerable change both locally

(Aberdeen Council 2007) and nationally (Palmer and Cooper 2011) in home insulation. The

method adopted was to compare national figures for changes in the penetration of the

various types of insulation for 2000 and 2010 (taking the figures from Palmer and Cooper

(2011)), and then assume that the same proportion of homes in the urban GILDED sample

that had each type of insulation in 2010 would not have had it in 2000, as the national

figures indicated would be the case for the whole population of UK households.

6.3 Patch file (urban) and Patch legend file
Netlogo divides space into square “patches”. The patch file states the patch type of a patch.

It has no header row; data are given in order X, Y, patch-type, dwelling-id…, where dwelling-

id is a comma-separated list of dwellings on that patch, and is only used if patch-type is

“dwelling”. The patch legend file specifies the permitted types of patch in a model, and the

colours they are assigned when the model is run using the Netlogo GUI. The patch legend

file for CEDSS is as shown below:

dwelling,green

street,gray

park,52

junction,6

where the numbers “52” and “6” represent particular shades of green and grey respectively.

Currently only one type of patch has any direct effect on CEDSS: “dwelling”. These are the

patches on which dwellings may be located. Shown below are extracts from the patch file

used in the calibration process:

2,1,dwelling,dwu-900

3,1,dwelling,dwu-911

4,1,dwelling,dwu-940

5,1,dwelling,dwu-1014

...

5,23,dwelling,dwu-1046

6,23,dwelling,dwu-408

45

0,0,junction,

0,11,junction,

...

1,1,park,

1,10,park,

1,12,park,

1,21,park,

...

1,0,street,

2,0,street,

3,0,street,

4,0,street,

...

It was decided not to use real-world street-networks as the basis of those used in CEDSS: it

was considered that the additional time required to do so could be more usefully spent in

improving the model and collecting other types of data, as any specific street-layout used

would not have corresponded to the locations in which the GILDED household surveys were

undertaken (survey respondents, on whose data characteristics of model households'

dwellings and household appliances were based, were widely distributed geographically

across the case-study area). The two patch files (for the urban and rural subsamples) for the

runs reported here were constructed using the following procedure:

1. A procedure for generating a street-network able to accommodate any desired number

of dwelling-patches was defined. The street-network consists of a set of “dwelling-

rows”, each dwelling-row consisting of eight patches on which a dwelling included in

the model run could be placed. All dwelling-rows except the last include exactly eight

such dwellings, one per patch. Four dwelling-rows make up a dwelling-square, and each

successive dwelling-squares is completely filled, with 32 dwellings, before the next is

begun. The order in which patches were assigned dwellings was to first fill the row on

the “south” side, west to east; then the west side, south to north; the east side, south

to north, and the north side, west to east. The first square filled was that in the south-

west corner of the network; the second abutted it to the east; the third abutted the

first to the north; the fourth abutted both the second and the third. The fifth abutted

the second to the east, the sixth abutted the fourth to the east, and the seventh and

last abutted the third to the north.

2. All dwellings of one type in the dwellings file were assigned consecutive patches in the

ordering thus defined, to reflect the fact that similar dwellings are likely to be located

near each other in real-world settlements.

6.4 Insulation file

The insulation file is used to specify the space heating energy demand for every permitted

combination of insulation state and dwelling type, relative to an arbitrarily chosen standard

combination, a two-bedroomed top floor flat with double glazing and 100mm of loft

insulation, but no wall insulation. This factor is multiplied by a figure for the energy needed

for space heating for a dwelling of that type and insulation state, for each type of heating

system covered (see the “Appliances fuel file” below). The unique identifier for an insulation

is given by its insulation state and dwelling type combined. The file used in the calibration

runs begins:

46

insulation-state,fuel-use-factor,dwelling-type

minimum,2.487,bung-det-cavity-1

dg,2.211,bung-det-cavity-1

loft100,1.987,bung-det-cavity-1

loft270,1.693,bung-det-cavity-1

...

The factors used are taken from tables in the document used to calculate CO2 emissions in

GILDED’s 2010 and 2011 surveys (Department of Energy and Climate Change 2009).

6.5 Insulation upgrade file

The insulation upgrade is used to specify the insulation upgrades that are available, taking a

dwelling from one insulation-state to another. There is one line in this file for each possible

upgrade for each dwelling type, giving the cost of the upgrade. The file used in the

calibration runs begins

dwelling-type,from-state,to-state,cost

bung-det-cavity-1,minimum,dg,3700

bung-det-cavity-1,minimum,loft270,500

bung-det-cavity-1,minimum,wi,500

bung-det-cavity-1,loft100,dg-loft100,3700

...

The prices were taken from Cambridge Architectural Research et al. (2009), p.31.

6.6 Appliances file

The appliances file gives properties of each appliance available for purchase by households

in the model. The model currently covers heating systems, cookers, refrigerators, freezers,

washing machines, dryers, dishwashers and televisions. The file includes a header row, and

each subsequent row gives the required details for each appliance: name, category,

subcategory, essential, hedonic-score, cost, energy-rating, embodied-energy, breakdown-

probability, first-step-available ,last-step-available. The name is a unique name for the

appliance; category and subcategory are used in the process of determining what a

household buys, while if essential is set to “true”, households will replace the item

immediately if it breaks down. Hedonic score is not currently used. Cost is a list of purchase

prices, one for each quarter during which the item was available, energy-rating is

information about the energy consumption of the appliance given to consumers, with a

higher score meaning better energy consumption (this is not available for all categories of

appliance – for those for which it is not available, all appliances in the category are given the

same score). (The actual energy consumed by appliances for different purposes is given in

the appliances fuel file.) The embodied-energy field is not currently used. The breakdown-

probability is the probability, per time step, of the equipment breaking down. The first and

last steps available are the numbers of the time steps in the model indicating when they are

first and last available. The start of the file used in the calibration runs is as follows:

name,category,subcategory,essential,hedonic-score,cost,energy-

rating,embodied-energy,breakdown-probability,first-step-available,last-step-

available

gas-standard-boiler-D,heating,gas-boiler-sub,TRUE,0,[2000],6,0,0.013,18,27

gas-standard-boiler-F,heating,gas-boiler-sub,TRUE,0,[2000],8,0,0.013,2,17

47

gas-standard-boiler-G,heating,gas-boiler-sub,TRUE,0,[2000],9,0,0.013,0,1

gas-condensing-boiler-A,heating,gas-boiler-

sub,TRUE,0,[2500],3,0,0.013,36,Inf

gas-condensing-boiler-B,heating,gas-boiler-sub,TRUE,0,[2500],4,0,0.013,0,35

oil-standard-boiler-C,heating,oil-boiler-sub,TRUE,0,[2000],5,0,0.013,18,27

oil-standard-boiler-D,heating,oil-boiler-sub,TRUE,0,[2000],6,0,0.013,2,17

oil-standard-boiler-G,heating,oil-boiler-sub,TRUE,0,[2000],9,0,0.013,0,1

oil-condensing-boiler-A,heating,oil-boiler-sub,TRUE,0,[2500],3,0,0.013,0,Inf

electric-heaters,heating,electric-heating,TRUE,0,[2000],0,0,0.013,0,Inf

Teba TFR14,cooker,electric-cooker-sub,TRUE,0,[200],11,0,0.014,0,3

Creda Capri C150E,cooker,electric-cooker-sub,TRUE,0,[250 250 250 250 230

230],11,0,0.014,0,5

Beko DV 5631,cooker,electric-cooker-sub,TRUE,0,[400 400 400 400 380 380 380

380 380 380 380 380],11,0,0.014,0,11

...

For heating systems, figures for energy use were calculated from Department of Energy and

Climate Change (2009) figures on energy efficiency, and the energy requirements of a two-

bedroom top floor flat with double glazing and 100mm of loft insulation but no wall

insulation (see above under "Insulation fi le" for information on adjustments to the figure for

other types of dwelling and insulation states). Figures for prices were taken from the file

consumerissues.jobsandmoney.htm retrieved from

http://www.guardian.co.uk/money/2005/apr/02/consumerissues.jobsandmoney, and

energy ratings corresponding to the boiler efficiencies from the website

http://www.sedbuk.com/pages/bands.htm, which is linked to the UK government’s

Standard Assessment Procedure (SAP) for assessing energy efficiency of buildings. Standard

boilers are no longer available after the second quarter 0f 2007, when it became compulsory

to fit condensing boilers in new homes and when replacing an old heating system in

Scotland.

The remaining appliances listed in the file used in the calibration process are all taken from

Argos catalogues of household appliances and other products. Argos is a large UK retailer,

which publishes a catalogue every six months. It was judged impractical to include in the

model the full range of household appliances available during the period 2000-2010, and

indeed, accessing information about even a fraction of them proved challenging. Repeated

requests to a number of retailers brought no positive responses. Relevant pages of the

catalogues from the second half of 2000 through 2007 were consulted at the Victoria and

Albert Museum in London; catalogues. Catalogues for Spring/Summer 2008, Autumn/Winter

2009, and Spring/Summer 2010 were obtained from colleagues. The contents of the

catalogues limited the range of appliances categories it was feasible to cover to cookers,

refrigerators, freezers, washing machines, dryers, dishwashers and televisions. The most

important omissions were probably lighting, where complications due to different numbers

and types of light fittings made their inclusion in the model too difficult; and home computer

equipment, of which Argos sells very little. The categories treated as essential are heating

systems, cookers, refrigerators and washing machines; those treated as non-essential are

freezers, dryers, dishwashers and televisions. Four categories were divided into

subcategories:

http://www.guardian.co.uk/money/2005/apr/02/consumerissues.jobsandmoney

48

 heating-systems were divided by fuel (gas, electricity or oil) and in the case of gas

and oil, by whether the boiler was a standard or condensing boiler;

 cookers were divided into electrical with a standard hob, electrical with a ceramic

induction hob, gas, and dual fuel (electric oven and gas hob);

 refrigerators were divided into those with and without a freezer compartment;

 televisions were divided into cathode ray tube (CRT), liquid crystal display (LCD) and

plasma.

The following algorithm was used to select items from each subcategory (categories that

were not subdivided were regarded as their own sole subcategory):

 For each catalogue, and each sub-category:
o List the items for sale, ignoring small numbers of items outside the main

catalogue section for the category. In the case of photographed catalogues,
include items that are not legible enough to use, unless it is unclear what
sub-category they belong to. Note which appear too illegible to use, note
any duplicate photos, and any pages within the category that are not to be
used due to illegibility.

o Note the photograph number and catalogue item number of the first,
middle and last item in catalogue order (these items are “selection points”).
If there are an even number of items in the sub-category, list the first of the
two items nearest the middle (e.g. if there are six items, list the first, third
and sixth). If there are fewer than three items, list them all. (If there are two,
they are counted as the first and last items, there being no middle item; if
there is only one, it counts as the first item, there being no middle or l ast.
This has implications for later catalogues explained below.

 For the Autumn/Winter 2000 catalogue (the first in which the categories of interest
appear):

o If a selection point item is legible, select it.
o Otherwise, look for a substitute item. For the first selection point, use the

legible item closest to the start; for the last selection point, that closest to
the end; for the middle selection point, the next choice is that immediately
after the selection point item, then that immediately before it, then that
two after it, that two before it, and so on. A first item is to be selected
before attempting to select a last item, and the latter before attempting to
select a middle item.

 For Spring/Summer 2000, use the items selected for Autumn/Winter 2000, together
with their prices and other characteristics.

 For each catalogue from Spring/Summer 2001 to Spring/Summer 2008:
o Check which of the items from the preceding catalogue reappear. If the first

item from the preceding catalogue is present, do not select a new first item
starting from the current catalogues. If the last item from the preceding
catalogue is present, do not select a new last item. If the middle item from
the preceding catalogue is present, do not select a new middle item. Any
items carried forward from the preceding catalogue thus retain the position
(first, middle or last) they had in that preceding catalogue, and only the
unfilled positions are filled by new selections.

o If any new items are to be selected, this is done in the same way as for the
earliest catalogue, except that any items carried over from the preceding

49

catalogue cannot be re-selected (in this phase, they are treated the same as
illegible items).

o If there are fewer than three legible items (old or new) for a sub-category in
the current catalogue, additional items are carried over from the preceding
catalogue, if available, even if they do not occur in the new catalogue, in the
order first, last, middle. Again, these items retain their former position as
first, middle or last.

 For Autumn/Winter 2008 and Spring/Summer 2009 (for which no catalogue was
available), carry forward all items from Spring/Summer 2009.

 For Autumn/winter 2009 and Spring/Summer 2010, revert to the procedure used
from Spring/Summer 2001 to Spring/Summer 2008.

 Notes:
o “Packages”, e.g. of a washing machine and dryer, or television and video

recorder or set-top box, have not been included.
o Items on are generally numbered consecutively on each spread (pair of

facing pages). Occasionally, a number is omitted, in the case of a full-page
promotion. More frequently, one number will cover a number of variants of
an item. In the cases of cookers, fridges, fridge-freezers, freezers, washing
machines and dryers, the cheapest variant has been used and the others
ignored. In the case of televisions, variants which concern screen size have
been counted as different, and given identifying letters (a, b, …)

o Note: “widescreen” and “flatscreen” televisions have been placed in the CRT
category unless they are specified as LCD or plasma.

Trends that were noticed during the process of extracting data from the catalogue were :

 There was a considerable increase in the number of items in most categories and
subcategories, with the exception of CRT televisions, which had disappeared by
spring/Summer 2010, and plasma televisions, which first grew and then declined in
number.

 There was some improvement in the energy-rating of appliances over the 10.5 year
period.

 There was a frequent pattern whereby an item would appear at one price, and
decline in price during its period of availability, while new items in the same
subcategory entered the catalogue at successively higher prices. (Some items did
increase in price, and the amount of decline varied between categories and
subcategories, with plasma televisions showing by far the largest falls.)

Figures for breakdown probability of appliances (where “breakdown” means a failure so

serious the appliance cannot be repaired or is not worth repairing) per year are not easy to

find. In fact, breakdown probability varies over time, with older appliances and perhaps very

new ones more prone to breakdown, but attempting to replicate such effects was judged

not to be worth the amount of time and effort required. Survival curves for televisions and

refrigerators are given by Gutierrez (20): 50% of televisions have been discarded after about

200 months (66.67 quarters) while for refrigerators half are gone in 150 months (50

quarters). A quarterly failure rate of 0.014 for refrigerators will reproduce the latter result,

and in the absence of other information this figure was used for other “white goods” (all the

appliances included in the model other than heating systems and televisions); a quarterly

failure rate of 0.010 for a television reproduces the figure for median failure time. Owen

50

(2006) p. 30, says that turnover of heating systems is 5% per annum, corresponding to a

probability of 0.013 per quarter.

6.7 Appliance replacement file
The appliance replacement file gives replacements for each appliance: the first item on a line

can be replaced by any of the subsequent items on that line, but by nothing else . In the file

used in calibration runs, any item can replace any other in the same subcategory.

Additionally, condensing boilers can replace standard boilers of the same type, electric

cookers with and without ceramic induction hobs can replace each other, gas and dual -fuel

cookers can replace each other, LCD and plasma televisions can replace each other.

gas-standard-boiler-D,gas-condensing-boiler-A,gas-condensing-boiler-B

gas-standard-boiler-F,gas-standard-boiler-D,gas-condensing-boiler-A,gas-

condensing-boiler-B

gas-standard-boiler-G,gas-standard-boiler-F,gas-standard-boiler-D,gas-

condensing-boiler-A,gas-condensing-boiler-B

gas-condensing-boiler-A

gas-condensing-boiler-B,gas-condensing-boiler-A

oil-standard-boiler-C,oil-condensing-boiler-A

oil-standard-boiler-D,oil-standard-boiler-C,oil-condensing-boiler-A

oil-standard-boiler-G,oil-standard-boiler-D,oil-standard-boiler-C,oil-

condensing-boiler-A

oil-condensing-boiler-A

electric-heaters

Teba TFR14,Teba TFR14,Creda Capri C150E,Beko DV 5631,Tricity Bendix SIE

324,Jackson by Creda J15 1EW,Belling Forum 335,Zanussi ZCE611X,Zanussi

ZCE531X,Zanussi ZCE641,New World 50WLG,Belling Forum 317,Beko D532,Hotpoint

HL500 electric,Indesit KD3E1,Hotpoint HW170E,Creda Menu M350E,Tricity Bendix

SIE 514,Beko DVC61,Creda X155,Tricity Bendix SIE 554,Tricity Bendix

SE340,Belling 644,Beko DCC 4521,Leisure Roma 50,Beko DC543,Leisure Zenith

ZE6HV,Beko DVC563,Indesit K6 C320,Hotpoint EW74,Hotpoint Creda C367

6.8 Fuel file
The fuel file gives properties of each fuel used to supply an appliance. Most appliances will

only use one type of fuel, but some (e.g. gas boiler or cooker) might use two (e.g. gas and

electricity), or possibly more. This is a simple three-column file with columns type, unit and

kWh. The last column gives the number of kWh of energy per unit of consumption of the

fuel.

For the purposes of calibration, gas and electricity were subdivided according to whether

their use was for space heating, water heating, or appliances; and oil according to whether

its use was for space or water heating. All fuels were measured in kWhs (Department of

Energy and Climate Change (2009), the source for usage figures, gives all figures in kWh).

Here is the file used in calibration runs:

type,unit,kWh

space-heating-elect,sh-elect-kWh,1

water-heating-elect,wh-elect-kWh,1

appliance-elect,ap-elect-kWh,1

space-heating-gas,sh-gas-kWh,1

water-heating-gas,wh-gas-kWh,1

appliance-gas,ap-gas-kWh,1

space-heating-oil,sh-oil-kWh,1

water-heating-oil,wh-oil-kWh,1

51

6.9 Appliances fuel file (urban)
The appliances fuel file gives the fuel used by households for each use of an appliance in

each context. It has a heading row with columns “appliance” giving the name of the

appliance, “household” giving the household type, “dwelling” giving the dwelling type,

“tenure” giving the tenure, “purpose” giving the purpose for which the appliance is used,

“mode” giving the usage mode (not used in the runs described here, where the usage mode

is always “normal”), “fuel” giving the type of fuel used, and “units 1” to “units” giving the

number of units. Obviously the file has the potential to get very long. To mitigate this, a

wildcard (*) may be used for the dwelling, tenure and mode columns (the household column

cannot currently use wildcards, as household-types-list has not yet been defined when this

file is read in). Here are extracts from the file used in the calibration runs:

appliance,category,subcategory,household,dwelling,tenure,purpose,mode,fuel,u

nits 1,units 2,units 3,units 4

gas-standard-boiler-D,heating,gas-boiler-sub,household,*,*,space-

heating,*,space-heating-gas,2355,785,785,2354

gas-standard-boiler-F,heating,gas-boiler-sub,household,*,*,space-

heating,*,space-heating-gas,2551,850,850,2551

...

gas-standard-boiler-D,heating,gas-boiler-sub,household,flat-non-top-cavity-

1,*,water-heating,*,water-heating-gas,1109,1109,1109,1109

gas-standard-boiler-D,heating,gas-boiler-sub,household,flat-non-top-cavity-

2,*,water-heating,*,water-heating-gas,1109,1109,1109,1109

gas-standard-boiler-D,heating,gas-boiler-sub,household,flat-non-top-cavity-

3,*,water-heating,*,water-heating-gas,1109,1109,1109,1109

...
Stoves Newhome 800 DF DOM,cooker,dual-fuel-cooker-

sub,household,*,*,hob,*,appliance-gas,83,83,83,83

Leisure Rangmaster 110,cooker,dual-fuel-cooker-

sub,household,*,*,hob,*,appliance-gas,83,83,83,83

...

Stoves Newhome 800 DF DOM,cooker,dual-fuel-cooker-

sub,household,*,*,hob,*,appliance-gas,83,83,83,83

Leisure Rangmaster 110,cooker,dual-fuel-cooker-

sub,household,*,*,hob,*,appliance-gas,83,83,83,83

Zanussi ZCM610X,cooker,dual-fuel-cooker-sub,household,*,*,hob,*,appliance-

gas,83,83,83,83

...

Data for this file was sourced from Department of Energy and Climate Change (2009). The

urban and rural versions of the file differ only in the fuel requirements for water heating.

The rural households in the GILDED 2010 survey had a slightly larger mean household size

(2.41 as opposed to 2.34 for the urban subsample), and these figures were used in

calculating those fuel requirements.

6.10 Suppliers file

The suppliers file gives energy prices offered by different suppliers for each fuel type each

step. This replaces the energy-monthly-cost-list in CEDSS 2. There is no functionality at

present to create a market for suppliers. Fuel prices are instead exogenous time series.

There is little point in having more than one supplier for each fuel type. The file has suppliers

in the first row, and fuel types in the next row. In subsequent rows, one for each time step,

52

are the energy prices (per unit) offered by the supplier for the fuel type. If the model runs

out of lines, the last price will continue to be used. The file will allow you to specify multiple

suppliers for each fuel type if you wish; however the program will simply take the cheapest

price in each time step as the price all agents use for that fuel. For the purposes of

calibration, we distinguished electricity, gas and oil used for different purposes, as in the

appliances fuel file. Data on prices was taken from the Department of Energy and Climate

Change time series of prices for gas, electricity and oil, taken from files qep413.xls,

qep551.xls and qep591.xls, all available online.

Supplier1,Supplier2,Supplier3,Supplier4,Supplier5,Supplier6,Supplier7,Suppli

er8

space-heating-elect,water-heating-elect,appliance-elect,space-heating-

gas,water-heating-gas,appliance-gas,space-heating-oil,water-heating-oil

0.0706,0.0706,0.0706,0.0166,0.0166,0.0166,0.0173,0.0173

0.0706,0.0706,0.0706,0.0166,0.0166,0.0166,0.0173,0.0173

0.0706,0.0706,0.0706,0.0166,0.0166,0.0166,0.0173,0.0173

0.0706,0.0706,0.0706,0.0166,0.0166,0.0166,0.0173,0.0173

0.0699,0.0699,0.0699,0.0171,0.0171,0.0171,0.0193,0.0193

0.0699,0.0699,0.0699,0.0171,0.0171,0.0171,0.0193,0.0193

0.0699,0.0699,0.0699,0.0171,0.0171,0.0171,0.0193,0.0193

0.0699,0.0699,0.0699,0.0171,0.0171,0.0171,0.0193,0.0193

…

6.11 Maximum in category file
The maximum in category files is used to place limits on how many appliances of each

category each type of household may possess (if an item is about to be added in excess of

this limit, the oldest item in the category will be sent to discarded first). There is one line for

each type of household, with the first item on a line identifying the household type, and

successive pairs of items identifying a category and setting the limit for that category. The

limit should never be zero (a limit of zero or below will cause an error). If no limit is set in

this file for a household type-category pair, no limit is enforced. The file used for the

calibration runs is as follows:

household,heating,1,cooker,1,freezer,2,fridge,3,washer,1,dryer,1,dishwasher,

1,TV,5

The limits used were taken from the maximum number of appliances of a category owned

by any household in the GILDED 2010 survey.

6.12 Household initial appliance file (urban)
The household initial appliance files assigns initial appliances to households. The first column

is the name of the household, the remaining columns are appliance names. (It is possible to

assign the same list of items to all households of a particular type and living in a particular

type of dwelling, but that facility has not been used in the runs reported here.) The file used

in the calibration runs begins as follows:

hhu-29,gas-standard-boiler-G,Indesit RG2190,Teba SBUZ01-08,Candy

CD242,Servis M3510,Teba TFR14,Sanyo 14M3 14 in

hhu-42,gas-standard-boiler-G,Indesit RG2190,Servis M3510,Stoves Newhome 800

DF DOM,Sanyo 14M3 14 in

53

hhu-46,gas-standard-boiler-G,Indesit RG2190,Servis M3510,Teba TFR14,Sanyo

14M3 14 in

hhu-51,gas-standard-boiler-G,Indesit RG2190,Servis M3510,Teba TFR14,Sanyo

14M3 14 in

hhu-93,gas-standard-boiler-G,Indesit RG2190,Teba SBUZ01-08,Candy

CD242,Servis M3510,Creda Menu M350E,Sanyo 14M3 14 in

hhu-98,gas-standard-boiler-G,Indesit RG2190,Servis M3510,Teba TFR14,Sanyo

14M3 14 in

hhu-104,gas-standard-boiler-G,LG GR-151SSF,Teba SBUZ01-08,Servis M3510,Teba

TFU 21,Sanyo 14M3 14 in

hhu-107,gas-standard-boiler-G,Indesit RG2190,Servis M3510,Hotpoint TDL30

Aquarius,Teba TFU 21,Sanyo 14M3 14 in

hhu-115,electric-heaters,LG GR-151SSF,Servis M3510,Teba TFR14,Sanyo 14M3 14

in

The heating system supplied to a household at the start of 2000 was determined by the

“primary” fuel that household reported using for heating in 2010 (where more than one fuel

was listed as primary, gas was preferred to electricity and oil, electricity to oil). In the case of

gas and oil using households, was less efficient than heating systems available in 2010. For

other appliances, all appliances assigned were the middle one of the three items in a

subcategory drawn from the Autumn/winter 2000 Argos catalogue. All households were

assumed to have a cooker of the same subcategory as they possessed in 2010, a refrigerator

which would have a freezer compartment (that is, be in the “fridge-freezer-sub”

subcategory) if they had one in 2010, a washing machine, and one CRT television. All

households with one or more freezers in 2010 were assigned one freezer in 2000. For dryers

and dishwashers, which were the categories of appliance in which the change in prevalence

between 2000 and 2010 was greatest, according to the table A45 “Percentage of households

with durable goods, 1970 to 2010 United Kingdom” of the 2010 Living Costs and Food

Survey, the same approach as for insulation states was taken: it was assumed that the

proportion of households possessing such an item in 2010 who would not have possessed

one in 2000, was the same as for UK households as a whole, and each household with such

an item in 2010 was assigned such an item in 2000 with the appropriate probability.

6.13 Summary

It will be seen that constructing the data files described above, to represent the situation of

the households in the model in 2000, involved making a considerable number of

assumptions. Nevertheless, there are few aspects of the files that do not have any empirical

justification. It should also be noted that all households retain their identity throughout the

runs – and indeed, throughout the scenario runs to 2050, with the movement of households

in and out of dwellings not being modelled. Obviously this is not realistic, but on the other

hand, there is no particular reason to expect incoming households to differ in any particular

direction from outgoing ones – indeed, since households select their dwellings on the basis

of their size and cost, the set of households occupying a given set of dwellings is likely to be

similar over considerable periods of time, even though there will then be considerable

turnover as individual households grow or shrink in size, and change their economic status.

54

7 Calibration and Validation of the CEDSS model
 The input files described above were held constant throughout the calibration process,

except for those aspects of the households file that were left unspecified in the preceding

section, and the income figures in that file. Four rounds of calibration runs, covering the

period from the start of 2000 to the middle of 2010, were undertaken to find values of these

aspects of the households file, and of the remaining model parameters used in the work

reported here, that gave the best match to the total usages of electricity, gas and oil for

space heating, water heating, and non-heating appliances for the urban subsample in the

GILDED 2010 survey. (Very few households reported using any other fuels, and these

households were excluded from the subsample.) The resulting set of parameters is referred

to as the “Urban 2000-2010 Model”.

To validate CEDSS for the Scottish case study area, a second partial set of input files was

created based on data from the rural (Aberdeenshire) subsample, and combined with the

additional parameters selected in stage 2 to produce the “Rural 2000-2010 Model”. It was

then verified that this model gave reasonably accurate results for the total usages of

electricity, gas and oil for space heating, water heating, and non-heating appliances for the

rural subsample in the GILDED 2010 survey. Ideally, both calibration and validation

procedures would have been more extensive than time allowed, but the results are judged

satisfactory, particularly given the need to construct the 2000 starting point for the

calibration and validation runs without data for the surveyed households from that time.

7.1 Calibration Stage 1A

Even keeping the parameter files described in section 6 above fixed, CEDSS still has a

considerable number of “free” parameters (parameters unconstrained by real-world data)

to be specified. Calibration requires an exploration of a model’s parameter space,

experimenting with a range of combinations of parameter values, but even if using only two

values per parameter, the number of possible combinations to be tried was too great to be

explored simultaneously. The largest component of domestic energy demand, by a

considerable margin, is for space heating. It was therefore decided, after some preliminary

experimentation, to begin by varying those parameters considered most likely to affect this

demand, while holding the rest constant. The plan followed was first (calibration stage 1A)

to perform single runs of the widest practicable range of possible combinations of these

parameters, and to single out for further tests the 16 parameter combinations that gave the

best overall sum of absolute errors. The overall sum of absolute errors was calculated as the

sum of the absolute values of eight figures: the differences between the energy demand

calculated from the urban subsample in the 2010 GILDED survey, and the corresponding

model result, over the last four quarters of a run, for electricity, gas and oil used for space

heating, for electricity, gas and oil used for water heating, and for electrici ty and gas used

for non-heating household appliances (the only gas appliances were gas cookers).

Parameters varied in calibration stage 1A were as follows:

55

 Household file

o Income. Because of the uncertainties inherent in the calculations of income

levels, and the importance of this parameter, incomes uniformly 1.5 and

0.75 times those calculated as described in section 6.1 were substituted for

those calculated.

o Value strength parameters (‘hedonism’, ‘gain’ and ‘norm’, corresponding to

hedonistic, egoistic and biospheric or pro-environmental values, and used in

determining which values predominate during each time step). Because the

GILDED 2010 Scottish survey indicated that expressed pro-environmental

values did not have a significant effect on energy demand, we made the

default assumption that these values were weak relative to hedonic and

egoistic values, at least when the purchasing decisions CEDSS simulates are

made. The default strengths assigned were hedonism 5, gain 5, norm 1.

Alternative settings tried were 1:1:1, 5:5:5, 1:5:1.

o Planning horizon parameter (‘planning’), used in determining whether to

adopt insulation measures, and how to replace a broken heating system.

The default value was 20 time steps (5 years). An alternative value of 4 time

steps (1 year) was tried.

 habit-adjustment-factor. This is one of the model's numerical parameters. It

determines the maximum amount by which households adjust the strength of their

value strength parameters in the direction of the value that has predominated in

their decision-making in the current time step (the strengths have a floor of 0, and

their sum never changes, so this maximum is not always reached) . The default value

was 0.1; alternative values of 0 and 0.5 were tried.

 credit-multiple-limit. Another numerical parameter. When buying non-essential

items, a household will not buy if the result would place them in debt (make their

capital negative) by more than their current income multiplies by this number. The

default value was 5; alternative values of 0 and 20 were tried.

 Social link matrix file. If two households have a social link, either can “visit” the

other. As a result, their value strength parameters will move closer together, and

the visitor will usually add an appliance which the host has to their “wish-list” of

appliances they will consider buying. This file specifies the probability that a social

link will exist between a pair of households at the start of the model run. For each

pair of household/dwelling type combinations, the probability of making initial links

between agents belonging to these types under various circumstances. Tenure is

ignored. These circumstances are:

a) Between households on dwellings on the same patch

b) Between households on dwellings on neighbouring patches within a specified

distance

c) Between households on dwellings separated by one or more contiguous patches

of a given type.

56

Each probability is treated independently. Hence if you have two type (b) links, one

with radius x, probability p1, another with radius y, probability p2, where y > x, then

the probability of making a link within radius x is p1 + (1 - p1)p2.

Social links can be both gained and lost: a new social link is always made via an

existing link; links are most likely to be lost when the two households are distant in

space, and have few of the same household appliances (used as a proxy for similarity

of lifestyle).

The default social link matrix file allows the same probabilities for all pairs of

households on the same square of 0.1, and of all pairs of households anywhere of

0.05. It should be noted that there would be some initial assortment of social links

by dwelling-type, as dwellings of the same type were placed close together. The

alternative tried at this stage was to have no social links at all .

These ranges of possibilities gave a total of 3.4.2.3.3.2 = 432 possible combinations. Each

was run once. The 16 giving the smallest sum of absolute errors were as shown in table 7.1.

For comparison, the total annual energy demand in kWh across all households and uses in

the GLDED 2010 Scottish urban subsample was 4,775,091 kWh.

Table 7.1. The sixteen runs from calibration stage 1A giving smallest sum of absolute errors.

Identifier Income
multiple

Values
parameters

Planning
horizon

Habit
adjustment
factor

Credit
multiple
limit

Social
links

Sum of
absolute
errors

1A:1 1 5:5:1 20 0.5 20 Yes 216562
1A:2 1 5:5:1 20 0.5 5 Yes 230931
1A:3 1 5:5:5 20 0.5 20 Yes 233209
1A:4 0.75 5:5:1 4 0 20 No 246743
1A:5 1 5:5:5 20 0.5 5 Yes 247642
1A:6 0.75 5:5:1 20 0.5 5 Yes 248262
1A:7 1 5:1:1 20 0 20 Yes 251139
1A:8 1.5 5:5:1 20 0.1 20 Yes 254533
1A:9 0.75 5:5:5 20 0.5 5 Yes 256755
1A:10 0.75 5:1:1 4 0 20 No 257008
1A:11 1.5 5:5:1 20 0.5 20 Yes 264376
1A:12 1.5 5:5:1 20 0.5 0 Yes 269621
1A:13 1.5 5:5:5 4 0.5 0 No 270567
1A:14 1.5 5:1:1 20 0 0 Yes 270585
1A:15 1 1:5:1 20 0 5 Yes 277378
1A:16 0.75 5:5:1 20 0.1 0 Yes 278119

7.2 Calibration Stage 1B
 The 16 best versions of CEDSS (i.e. parameter combinations) from stage 1A, listed above,

were next run 10 times each. The intention had been to take the version with the lowest

mean sum of absolute errors as the basis for further parameter space exploration. However,

a number of the model versions had a very similar mean sum of absolute errors, and a

57

detailed examination of the different errors indicated that this might not be the best course

of action. The relevant figures are given in table #. The GILDED survey urban subsample

totals for appliance, space heating and water heating energy demand are 379,109kWh,

3,485,086kWh and 910,897kWh respectively, summing to 4,775,091 kWh as already noted

(figures are rounded to the nearest kWh).

Table 7.2. Results of runs during calibration stage 1B.

Identifier Mean sum of
absolute errors

Mean net
appliance error

Mean net space
heating error

Mean net water
heating error

1A:1 260767 -4473 -28080 84624
1A:2 261620 -9170 -66346 82253
1A:3 322227 -8244 -157105 83156
1A:4 246424 -34856 -74153 78717
1A:5 298095 -8940 -134896 79298
1A:6 252522 -13959 -90127 80296
1A:7 357378 10667 -138881 81988
1A:8 340656 1280 -158158 79084
1A:9 302505 -19828 -149066 82281
1A:10 258170 -39233 -76481 82287
1A:11 252477 -1755 -39626 87595
1A:12 260186 -8119 -88242 77187
1A:13 276043 -83031 -72535 83102
1A:14 362093 6619 -157534 77888
1A:15 332007 -37700 -182152 74779
1A:16 297824 -18088 -154268 79986

What leaps out of this table is that all the models overestimate water heating energy

demand (and the figure from the GILDED 2010 survey for the Scottish urban subsample is

910,897kWh, so the overestimate is considerable). Model 1A:1 has the smallest magnitude

mean net space heating error (the net space heating error for a run is calculated by adding

the total space heating demand over all three fuels for the last four quarters of the run, then

subtracting the corresponding value for the 2010 survey urban subpopulation, then the

mean for this value is taken over all 10 runs), and the third smallest magnitude mean

appliance error (calculated in the corresponding way); and it was decided that it would be

the best basis for further exploration of parameter space. At the time of writing, the

consistent positive errors in water heating energy demand remain unexpl ained, and further

investigations are planned; we could easily get rid of them by reducing the mean size of

household, but doing so without understanding their source would be unwise.

7.3 Calibration Stage 2A
Calibration stages 2A and 2B followed the same lines as stages 1A and 1B, but exploring

changes in a different set of parameters. Because some of the best parameter sets in Stage

1B (1A:11 and 1A:12) had an increased income relative to the default, this parameter was

once again varied, using values of 1.25 and 1.5 those of the model selected as the basis of

further exploration (1A:1). Apart from this, all the parameters explored in stage 1 kept the

values of 1A:1 for all runs. Instead, four parameters expected primarily to affect non-

heating appliances were varied. These were as follows:

58

 new-subcategory-appliances-per-step. A number of appliances that are in a recently

introduced subcategories can be added to each household's wish-list; this parameter

specifies how many can be added. The default value (that used for 1A:1) is 2;

alternative values of 1 and 4 were tried.

 new-subcategory-steps. This parameter specifies how long (for how many time

steps) a subcategory is considered new. The default value is 4; an alternative of 8

was tried.

 old-product-steps. Even if appliances are not broken, the household may decide to

replace them. This parameter specifies how many time step an item must have been

owned for before this may happen. The default is 4; an alternative of 8 was tried.

 visits-per-step. As explained above, when one household "visits" another, it may add

an appliance that household owns to its wish-list. This parameter specifies how

many such visits a household may make per time step. The default value is 2;

alternatives of 1 and 4 were tried.

These combinations of parameters produce 3 × 3 × 2 × 2 × 3 = 108 possibilities, each of

which was run once. As for stage 1A, we list the best 16 in table 7.3.

Identifier income
multiple

new-
subcategory-
appliances-
per-step

new-
subcategory-
steps

old-
product-
steps

visits-
per-step

Sum of
absolute
errors

2A:1 1.5 1 8 8 1 170277
2A:2 1.5 2 8 4 2 180083
2A:3 1 1 8 4 1 184452
2A:4 1 4 8 4 2 190336
2A:5 1.5 1 4 4 4 193651
2A:6 1.5 1 4 4 2 195663
2A:7 1.25 4 4 4 2 195839
2A:8 1.5 1 8 4 1 197511
2A:9 1 4 8 4 1 198347
2A:10 1.5 4 4 8 1 199275
2A:11 1.5 2 8 4 1 200810
2A:12 1 4 8 8 1 202532
2A:13 1 4 4 4 4 203547
2A:14 1 2 8 8 1 203632
2A:15 1.25 2 4 4 1 205597
2A:16 1.25 4 8 4 2 206112

7.4 Calibration Stage 2B
As in stage 1, 10 runs of each of the best 16 versions of the model were run, with the results

shown in table 7.4.

59

Table 7.4. Results from stage 2B.

Identifier Mean sum of
absolute errors

Mean net
appliance error

Mean net space
heating error

Mean net water
heating error

2A:1 238781 -17983 -59849 79658
2A:2 228647 -27075 -77018 87178
2A:3 238408 -37212 -46904 81201
2A:4 240802 -28492 -97324 77579
2A:5 264918 -22888 -125765 78889
2A:6 262452 -28500 -10592 82455
2A:7 244245 -25922 -93634 77262
2A:8 225661 -40441 -68200 75680
2A:9 228349 -38269 -57894 78805
2A:10 249586 -10592 -72245 79138
2A:11 238565 -37995 -62859 77503
2A:12 248063 -19289 -61198 80641
2A:13 229345 -20286 -88356 83328
2A:14 223354 -19453 -31127 84679
2A:15 230607 -34199 -46934 82812
2A:16 241632 -30091 -78228 86059

On this occasion, the version with the lowest sum of absolute errors, 2A:14, had the second

lowest mean net appliance errors, and the fourth lowest mean net space heating errors; this

was selected as the best version to validate, and if the validation was acceptable, to use for

future scenario runs to 2050. Figures 7.1 and 7.2 show more detailed mean results in

graphical form. The meaning of the labels on the x-axis, and the figures from the GILDED

2010 Scottish urban subsample in relation to which errors are calculated are as follows:

Appliance electricity (A/E): 328,629 kWh

Appliance gas (A/G): 50, 839 kWh

Space heating electricity (S/E): 159,740 kWh

Space heating gas (S/G): 3,307,148 kWh

Space heating oil (S/O): 18,198 kWh

Water heating electricity (W/E): 73,544 kWh

Water heating gas (W/G): 833,652 kWh

Water heating oil (W/O): 3701 kWh

Total: 4,775,091 kWh

60

Figure 7.1. Mean net errors of CEDSS model 2A:14 on urban subsample

Figure 7.2. Mean proportional errors of CEDSS model 2A:14 on urban subsample

61

As can be seen, all the net mean errors are small in relation to the total energy demand from

the survey. The largest proportional demand by far is for appliance gas, but this makes up

only a little over 1% of total energy demand. The systematic overestimate of water heating

gas has already been noted.

7.5 Validation on the Rural Subsample
Validation was carried out by running model 2A:14 on the rural subsample of the GILDED

2010 Scottish survey ten times. The mean sum of absolute errors over ten runs was 294,830

kWh, compared with a total energy demand of 6,272,414 kWh. Figures 7.3 and 7.4 show

mean net error results in graphical form.

Figure 7.3. Mean net errors of CEDSS model 2A:14 on rural subsample

The figures from the GLDED 2010 Scottish rural subsample in relation to which errors are

calculated are as follows:

Appliance electricity: 348,036 kWh

Appliance gas: 29116 kWh

Space heating electricity: 469,836 kWh

Space-heating gas: 1,780,935 kWh

Space-heating oil: 2,751,044 kWh

Water-heating electricity: 365, 088 kWh

Water-heating gas: 100,032 kWh

Water-heating oil: 428,407 kWh

62

Figure 7.4. Mean proportional erros of CEDSS model 2A:14 on rural subsample

As can be seen there are two relatively large proportional mean net errors, on appliance gas,

and to a lesser extent space heating electricity. However, the GILDED survey figure for

appliance gas is less than 0.5% of the total, while the error on space heating electricity is

almost balanced by that on space heating oil: it is possible that we have counted some

households as suing electricity for heating when in fact they use oil, or a mix of both, since if

both electricity and oil were noted in the survey as “primary” fuels, we assumed they used

oil for space (and water) heating.

Overall, considering that the total energy use for the rural subsample is nearly 1/3 larger

than that for the urban subsample, and the balance of fuels is very different, with much

more oil used by the rural subsample (many rural households in the sample do not have

mains gas), it was considered that the model, while certainly not perfect, was good enough

to be used as the basis for future scenarios, considering the large uncertainties that any such

scenario modelling must involve.

63

8 Scenarios to 2050
In applying CEDSS to future scenarios, the main problem is in selecting what aspects of

possible futures to study, both with regard to policy decisions, and with regard to possible

trends and occurrences over which policy makers have limited or no control. We have

defined clusters of scenarios by specific policy measures, and scenarios within those clusters

by aspects of the future over which policy-makers control is limited, although not necessarily

absent. Before describing these clusters and scenarios, however, some aspects of the

models as applied to all clusters and scenarios need to be briefly described.

As with model runs for the period 2000 to mid-2010, discussed in the preceding two

sections, we have not as yet attempted to model demographic change, although CEDSS does

have the facility to do this. Thus, we have assumed that all urban households have the

average size found in the GILDED survey for the urban subsamples, and similarly for rural

households in relation to the rural subsample.

With regard to energy efficiency, we have assumed that no significant improvements in

boiler efficiency will occur (current condensing boilers are already rated at 90% efficiency or

better), and that any improvements in the energy efficiency of televisions will be balanced

by increases in size and functionality. For other appliances, we have assumed in all the runs

reported here that there will be a gradual increase in efficiency and that this will not be

offset by increases in size or functionality. Specifically, an improvement of one energy-rating

grade every 15 years is assumed, but this takes place in 5-year steps. In the scenarios where

no specific policy measures are taken to discourage the sale of less efficient appliances,

households always have a choice between three items in each subcategory, at different

prices (see below). For the remainder of 2010, no change occurs in what is available. From

then on, a new set of items replaces the old every 5 years. If there are any differences in

energy efficiency, the more expensive items are always the more efficient, but there is never

more than one grade difference between the most and least expensive items. For 2011-

2015, the energy efficiencies (and the ratings indicating them) are set on the basis of what is

available in the Spring/Summer 2010 Argos catalogue. Thereafter, an improvement of one

rating step occurs every five years at one of the three price levels. For example, in 2011-

2015, the most expensive and mid-range freezers are energy-rated A, the cheapest B. In

2016-2020, all are rated A, in 2021-2025 the most expensive is rated A+, and in 2026-2030

both the most expensive and the mid-range freezer are A+, while only the cheapest is rated

A. Energy demands corresponding to the different ratings are taken from Department of

Energy and Climate Change (2009), as before.

Prices and incomes only have significance in relation to each other. We have chosen to keep

appliance prices stable, and vary fuel prices, and household income available for spending

on the goods and fuels included in the model in relation to these. Appliance prices other

than for heating systems are set at the median and lower and upper quartiles of the prices in

those subcategories for the last three years of the 2000 to mid-2010 runs. Prices of heating

systems, and improvements to insulation, are stable unless altered as a result of a policy

decision, as described below.

64

Thus far, our investigations have focused on four variable features of possible domestic

energy futures:

1. Household incomes. We have examined scenarios where these are stable (in

relation to appliances prices), and where they are rising at 2% per annum. Of

course, household incomes – and particularly their distribution across income levels

– are affected by policy decisions; but these are not in general aimed at altering

energy demand, so we can reasonably regard them as exogenous to CEDSS's domain

of interest.

2. Fuel prices. We have examined scenarios where these are stable (relative to

appliance prices), or increase at either 2% or 4% per annum. As with incomes, fuel

prices are of course affected by policy decisions, and in this case, policies on taxation

and/or subsidy may be aimed at reducing (or increasing) energy demand; although

of course these prices are also affected by factors beyond the control of policy

makers. The different schedules for incomes and fuel prices combined define six

families of "income-fuel-price scenarios".

3. Subsidisation of boiler replacement and insulation measures. By default, we have

assumed that prices of boilers and insulation measures remain the same.

Alternatively, we have assumed that these prices are subsidised from 2015, falling

by 30% at that date. This required use of a parameter file not used in the 2000-mid-

2010 runs: the insulation update file. There is one line in this file for each update. An

update can be one of three options: removing an upgrade option, adding an

upgrade option, or changing the cost of an upgrade option. The file used in the runs

reported here begins:
step,command,dwelling-type,from-state,to-state,cost

60,change,bung-det-cavity-1,minimum,dg,2590

60,change,bung-det-cavity-1,minimum,loft270,350

60,change,bung-det-cavity-1,minimum,wi,350

60,change,bung-det-cavity-1,loft100,dg-loft100,2590

60,change,bung-det-cavity-1,loft100,loft270,350

...

4. Regulation of the energy efficiency of appliances. By default, we have assumed no

such regulation. Alternatively, we have assumed that once sufficient choice is

available of a particular type of appliance at or above a particular energy-rating,

appliances with lower ratings are no longer allowed to be sold. Specifically, once the

mid-priced item of the trios described above reach a given rating, the cheaper and

lower-rated appliance is excluded from the market. Subsidisation and regulation

together define four clusters of “policy scenarios”.

In total, we thus have 24 scenarios, grouped in four policy-defined clusters, which cut across

six income-fuel-price defined families. We ran each of the 24 scenarios 16 times each for

both urban and rural subsamples. Detailed statistical analysis of the results remains to be

done, and will be reported in papers to be submitted in the next few months, but the

following figures display some interesting outcomes in graphical form.

First, we show plots of the energy demand in 2050 in the urban scenarios, for appliances,

and for space and water heating combined. Figure 8.1 colour-codes the clusters, and shows

members of different families by different symbols, while figure 8.2 reverses this.

65

Figure 8.1. Urban scenarios to 2050, coloured by family

Figure 8.2. Urban scenarios to 2050: coloured by policy cluster

66

At a glance, it appears that, although there are six colours in figure 8.1, denoting income-

fuel-price families, and only four in figure 8.2, denoting policy clusters, the colours are more

spatially distinct in the former, implying that differences in income and fuel-price

trajectories have made more difference to the outcome than the policy changes. From figure

8.1, it also appears that income and fuel price changes have made more difference to energy

demand for appliances than for space and water heating: this might be expected, as the

former depends heavily on what appliances have been bought, which in turn depends on the

funds available to buy them, which will be greater not only if there is more income, but also

if fuel prices are lower. Thus, as we might expect, the red symbols (fuel prices stable,

incomes rising at 2% per annum) cluster towards the top of the plot (high appliance energy

demand), while the cyan (fuel prices rising by 4% per annum, incomes stable) cluster toward

the bottom. Also worth noting is the multicoloured scatter of symbols to the lower left on

both plots: runs which resulted in relatively low overall energy demand, which are a mix of

both families and clusters of scenarios. These, we surmise, result from the chance choices of

biospheric values by an unusual number of households at some point in the scenario,

leading via the "habit adjustment" and social influence mechanisms in the model to a

population of households with unusually biospheric values.

We now look at some individual clusters and families of urban scenarios. Figure 8.3 singles

out scenario runs from the cluster with no policy initiatives: the effects of different income

and fuel price trajectories is quite clear. The other three clusters are similar.

Figure 8.3. Scenario runs from the cluster with no policy initiatives.

67

By contrast, different income-and-fuel-price families of scenarios show rather different

patterns from each other.

Figure 8.4. Top graph: results from runs with income and fuel prices stable; bottom graph: results from runs
with income stable and fuel prices increasing by 4% per annum.

68

When income and fuel prices are stable, there is very little apparent separation between the

different policy cluster runs, as shown at the top of the figure. By contrast, when income is

stable but fuel rises in price at 4% per annum, as shown in the lower part of figure 8.4,

separation of policy scenarios is apparent, particularly if red and blue (regulation of

inefficient appliances) are considered together in contrast to the green and black (no such

regulation). In none of the families does such a clear separation appear in the horizontal

direction, where we might have expected black and red (subsidies for installing condensing

boilers and insulation) to have clustered to the left (low demand for space and water

heating) and green and blue (no such subsidies) to the right.

We can also look at the trajectories of energy demand over time. All show fairly similar

patterns, with heating energy demand falling more or less continuously, while appliances

energy first rises gradually, then more sharply, then falls.

Figure 8.5. Time series trajectories of heating energy consumed against appliance energy consumed.

The 16 trajectories shown here all start at the lower right. This set was chosen because it

shows three clear outliers, ending at significantly lower points than the main cluster:

possible examples of a number of chance decisions to follow bi ospheric values at a particular

point in time setting the entire community of households on a lower-demand path through

habit and social interaction effects; it is worth noting, nevertheless, that in qualitative terms

they show a similar pattern to the rest of the runs, with heating energy demand falling

throughout, while appliance energy demand rises and then falls. The overall change from

start to finish – of falling heating energy demand partially offset by rising appliance energy

demand – reproduces that seen in UK statistics in recent years. The fall in appliance energy

demand may result from households hitting the limits on the number of appliances they can

69

possess in each category, together with the absence of new kinds of appliances in our

scenarios.

In most respects, patterns in the rural scenarios were quite similar to those in the urban

ones, as can be seen by comparing figure 8.6 with figure 8.1. However, the rural scenarios

show noticeably more divergence in heating energy demand, as can be seen in figure 8.1:

almost all the urban scenarios show final year heating energy demand between 3,100,000

kWh and 3,500,000 kWh, while the rural scenarios are spread somewhat more evenly, and

range from 4,100,000 kWh to over 4,700,000 kWh. The reason for this difference is not

known.

Figure 8.6. Rural scenarios to 2050, coloured by family.

70

9 Conclusions and Future Work
We consider that the agent-based modelling component of GILDED has demonstrated that

the technique has a significant contribution to make to the investigation of behavioural

issues in domestic energy demand, and in particular of possible policy approaches to

reducing such demand by encouraging changes in decision-making about the purchase of

energy-using and energy-saving equipment.

The CEDSS model has reproduced, without them being coded in in any explicit way, the

major trends in domestic energy use in the UK over the past decade, notably the reduction

in energy used to heat the home as a result of the installation of more efficient boilers and

better insulation; and the partial offsetting of this improvement by the increase in the

number of electrical appliances bought for and used in the home. The future scenarios we

have run indicate that this trend is likely to continue, although the extent to which it does so

will be influenced both by factors largely beyond the control of those policy-makers whose

focus is on energy demand, such as household incomes and fuel prices, but also by policy

decisions. The policy initiative we have investigated so far are relatively modest, but the

progressively tighter regulation of inefficient household appliances appears able to make a

noticeable difference, particularly in scenarios where fuel prices rise in relation to household

incomes – which seems likely to be the case in the coming decades. It was not clear that

subsidising the purchase of condensing boilers and insulation made a difference; this may be

because most of our households had already taken the cheaper insulation measures, and did

not – as indeed, most households in reality probably do not – replace their heating systems

until they break down, when they must of necessity be replaced, and few adopt the more

expensive insulation measures, such as wall insulation.

We are not aware of any previous model that has attempted to model household decision-

making processes in this area. The process of designing and implementing such a model in

itself has revealed many of the complexities of how people think about their domestic

energy use, and energy using and energy saving equipment, as described in section 3 above.

It has also perhaps clarified how agent-based modelling can complement more established

approaches to social science, which in this area tend to focus on what people say about their

energy use and its relationship to their values, as opposed to hard data about the decisions

they make and their medium to long-term consequences. While the survey data gathered in

other GILDED workpackages has been essential to our modelling work, i n order to

implement a model that could plausibly tell us something about the future, we needed to be

able to model the recent past, and change over that period, as well as the present; and in

order to do that, we needed a wide range of quantitative data about that recent past:

energy prices, household incomes, heating systems, insulation measures, the prices and

properties of household appliances. This information is not readily available in convenient

forms and formats, and we were obliged to make more assumptions than we would have

liked. Where we were unable to access any relevant data – as in the case of the influence of

social contacts on purchase decisions – we have been obliged to experiment with different

parameter settings to calibrate those aspects of our model. The fact that we were

nevertheless able to construct a version of the model that produced outcomes in the

71

present that were quite close to those indicated by the GILDED survey we regard as a

vindication of the agent-based modelling approach.

Use of the CEDSS model is written in to work to be done at the James Hutton Institute for

the Scottish Government, specifically in relation to pathways to a “low-carbon rural

economy”. In the immediate future, we will be continuing to explore and analyse the

scenarios described in the preceding section, and writing these analyses up for publication in

peer-reviewed journals. We will also be extending the range of scenarios explored,

examining a wider variety of trajectories for household income and fuel prices, the possible

introduction of new types of household appliance, and additional policy measures. The UK

government is currently deciding whether or not to oblige householders to improve

insulation at the point at which a new boiler is installed, or windows are replaced; and this

kind of compulsion might have a more definite effect than we have found for the use of

subsidies. We will also be attempting to identify the factors responsible for those aspects of

the current version of CEDSS (defined by the 2A:14 set of parameters) that failed to match

the survey results, notably the overestimate of energy demand for water heating relative to

those results, and the underestimate demand for gas for household appliances (i.e.,

cookers).

The longer-term intention is to use CEDSS in “backcasting” mode: specifying a current state,

and a desired future state (in this case in 2050, the date the Scottish Parliament has set for a

highly ambitious 80% greenhouse gas emission reduction target (Climate Change (Scotland)

Act, 2009)), and looking for feasible transitions from one to the other. We also plan to make

use of the facilities CEDSS already has to model demographic change, although this will

require the collection and integration of a new class of real -world data, drawing on the UK

census and a range of local government statistics on the composition and activities of

households in Aberdeen and Aberdeenshire. This work will be integrated with further

empirical social science work on Scottish household energy-related values, attitudes and

behaviours, and ways of influencing them.

72

10 References
Aberdeen City Council (2007) Home Energy Conservation Act 1995: Fifth Progress Report.

Aberdeen City Council.
Alcamo, J. (2001) Scenarios as tools for International Environmental Assessments.

(Environmental Issue Report No. 24, Experts' Corner Report: Prospects and Scenarios
No. 5). European Environment Agency, Copenhagen.

Bankes, S. (2002) Tools and Techniques for Developing Policies for Complex and Uncertain
Systems, Proceedings of the National Academy of Sciences, 99, pp. 7263-7266.

Banks, J., Smith, Z. and Wakefield, M. (2002) The Distribution of Financial Wealth in the UK:
Evidence from 2000 BHPS Data. The Institute for Fiscal Studies.

Barthelemy, O. (2007) Untangling Scenario Components with Agent Based Modelling: an
Example of Social Simulations of Water Demand Forecasts. PhD thesis, Centre for
Policy Modelling, Manchester Metropolitan University.

Bin, S. and Dowlatabadi, H. (2005) Consumer lifestyle approach to US energy use and the
related CO2 emissions. Energy Policy 33: 197–208.

Cambridge Architectural Research, Cambridge Econometrics, Roger Talbot & Associates Ltd,
Alembic Research (2009). modelling Greenhouse Gas emissions for Scottish Housing:
Final Report. Scottish Government Social Research.

Department of Energy and Climate Change (2009). Act on CO2 Calculator Version 2.0: Data,
Methodology and Assumptions Paper. United Kingdom Department of Energy and
Climate Change.

Edmonds, B. and Barthelemy, O. (2002) Domestic water demand and social influences: an
agent-based modelling approach. CPM Report No: CPM-02-103, Centre for Policy
Modelling, Manchester Metropolitan University.

Gotts, N. (2009) ABMED: A prototype model of energy demand. Sixth Conference of the
European Social Simulation Association, University of Surrey, Guildford, Surrey, 14-18
September 2009.

Gotts, N.M., Polhill, J.G. and Law, A.N.R. (2003). Agent-based simulation in the study of
social dilemmas. Artificial Intelligence Review, 19, 3-92.

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand,
T., Heinz, S. K., Huse, G., Huth, A., Jepsen, J. U., Jørgensen, C., Mooij, W. M., Müller, B.,
Pe'er, G., Piou, C., Railsback, S. F., Robbins, A. M., Robbins, M. M., Rossmanith, E.,
Rüger, N., Strand, E., Souissi, S., Stillman, R. A., Vabø, R., Visser, U. and DeAngelis, D. L.
(2006) A standard protocol for describing individual-based and agent-based models.
Ecological Modelling 198: 115–126.

Grimm, V., Berger U., DeAngelis, D. L., Polhill, J. G., Giske, J. and Railsback, S. F. (2010) The
ODD protocol: A review and first update. Ecological Modelling 221: 2760-2768.

Gutiérrez, E., Adenso-Díaz, B., Lozano, S. and González-Torre, P. (2010). A competing risks
approach for time estimation of household WEEE disposal. Waste Management 30:
1643-1652.

Horsfield, G. (2011) Family spending: A Report of the 2010 Living Costs and Food Survey.
United Kingdom Office for National Statistics.

LaLonde, W. and Pugh, J. (1991) Subclassing ≠ subtyping ≠ is-a. Journal of Object-Oriented
Programming 3(5): 57-62.

Lansing, J.S. and Kremer, J.N. (1993) Emergent properties of Balinese water temple
networks: coadaptation on a rugged fitness landscape. American Anthropologist
95:97-114.

Lindenberg, S., and Steg, L. (2007) Normative, gain and hedonic goal -frames guiding
environmental behavior. Journal of Social Issues. 63 (1): 117-137.

73

Mäenpää, I. (2005) Analysis of environmental impacts of consumption in Finland. In
Hertwich, E. G., Briceno, T., Hofstetter, P. and Inaba, A. (eds.) Norwegian University of
Science and Technology, Industrial Ecology Program: Trondheim Vol.2005/1. pp. 1-21.

Owen P. (2006) The rise of the machines: a review of energy using products in the home from
the 1970s to today. Energy Saving Trust. Available online: URL
http://www.energysavingtrust.org.uk/Publications2/Corporate/Research-and-
insights/The-rise-of-the-machines-a-review-of-energy-using-products-in-the-home-
from-the-1970s-to-today.

Palmer, J. and Cooper, I. (2011). Great Britain's Housing Energy Fact File 2011. United
Kingdom Department of Energy and Climate Change.

Polhill, J. G. and Gotts, N. M. (2009). Ontologies for transparent integrated human-natural
systems modelling. Landscape Ecology 24 (9): 1255-1267.

Polhill, G., Galan-Diaz, C., Gotts, N. M., Craig, T., Marshall, K., Sutherland, L.-A., Kriel, A. and
Fischer, A. (2010) The ODDness of modelling: early experiences from a
transdisciplinary modelling exercise. Third World Congress on Social Simulation,
University of Kassel, Kassel, Germany, 6-9 September 2010.

Ramanath A. M. and Gilbert N. (2004) The design of participatory agent-based social
simulations. Journal of Artificial Societies and Social Simulation 7 (4): 1.

Schreinemachers, P. and Berger, T. (2006) Land-use decisions in developing countries and
their representation in multi-agent systems. Journal of Land Use Science 1(1): 29–44.

Weber, C. and Perrels, A. (2000) Modelling lifestyle effects on energy demand and related
emissions. Energy Policy 28: 549-566.

Wilensky, U. (1999) NetLogo, http://ccl.northwestern.edu/netlogo/. Center for Connected
Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

http://www.energysavingtrust.org.uk/Publications2/Corporate/Research-and-insights/The-rise-of-the-machines-a-review-of-energy-using-products-in-the-home-from-the-1970s-to-today
http://www.energysavingtrust.org.uk/Publications2/Corporate/Research-and-insights/The-rise-of-the-machines-a-review-of-energy-using-products-in-the-home-from-the-1970s-to-today
http://www.energysavingtrust.org.uk/Publications2/Corporate/Research-and-insights/The-rise-of-the-machines-a-review-of-energy-using-products-in-the-home-from-the-1970s-to-today

74

Appendices

75

Appendix 1: Description of Workpackage 5 from GILDED Grant

Agreement

Work package

number

5 Start date or starting

event:

Month 2

Work package
title

Agent-Based Modelling

Activity Type RTD

Participant
number

1 2 3 4 5

Personmonths

per
participant:

13 1 1 1 1

Objectives

 To integrate empirical findings from the case studies (WPs 2, 3 and 4), relevant theories and
knowledge in a formal framework as an ontology.

 To use the ontology, together with scenarios of policy measures, technology methods and attitude

changes from WP4, to develop agent-based models exploring trajectories of possible transitions to
low-carbon economies in each case study, for the period to 2050.

 To provide results from the agent-based models for WP6 and for dissemination to WP1.

 To test the ontology-based modelling platform and associated model-development methodology

using real-world case studies.

Description of work (possibly broken down into tasks), and role of participants

The work in WP5 essentially involves the incremental development of the agent -based model CEDSS with

associated ontologies, and simulation experiments with CEDSS to analyse scenarios of interest to other

workpackages (e.g. WP4 and WP6). CEDSS will be developed in consultation with the case study teams

(WPs 2 & 3), initially using a prototype model developed early on in the project as a basis to facilitate

discussion. Following that, the major development of CEDSS will take place, focused initially on the

Scottish case study, hence the resulting model is called Scot-CEDSS, though it is expected to have wider

applicability. Finally, minor alterations will be made to Scot-CEDSS in consultation with the other case

study teams to produce full-CEDSS. In detail, the tasks are as follows:

Tasks

T 5.1 Develop a prototype for CEDSS (proto-CEDSS) using the ontology-based framework. (MLURI)

T 5.2 Present proto-CEDSS to the Scottish case-study team and WP3 leaders, with a view to

exchanging ideas on information required from the case-studies to provide empirical information

for CEDSS, and to gather information needed to define the Domain Ontology on which CEDSS

will be based. (MLURI, RuG)

T 5.3 Ontology development (MLURI, WP4 & 6)

T 5.4 Develop and validate the first version of full CEDSS (Scot-CEDSS), with a view to implementing

it on the Scottish case study. The approach will involve a process of incremental versioning,

liaising closely with the Scottish case study team, both over the structure of the model, and

76

emerging requirements for empirical data. (MLURI)

T 5.5 Design simulation experiments to use with Scot-CEDSS/full-CEDSS, create the associated

scenario ontologies, and conduct the necessary simulations and gather results. (MLURI, WP4 &

6)

T 5.6 Demonstrate Scot-CEDSS to the other case study teams (at the second consortium meeting)

and gather feedback for making the minor alterations needed for the final version of CEDSS

(full-CEDSS), and any changes to the domain or framework ontologies. (MLURI, all)

T 5.7 Develop full-CEDSS and incrementally validate it, making appropriate minor alterations to Scot -
CEDSS agreed in the meeting. (MLURI)

T 5.8 Dissemination of results of simulation experiments and ontology-based model development

methodology. (MLURI)

Deliverables (brief description and month of delivery)

D11 Final report, covering experiments with full-CEDSS and summarising work done in this WP.

(month 36).

Milestones

 M 5.1 Meeting with RuG to exchange information on CEDSS (month 3)

 M 5.2 Meeting (consortium) to demonstrate Scot-CEDSS and decide full-CEDSS (month 18)

 M 5.3 Experiments with Scot-CEDSS (month 24)

 M 5.4 Experiments with full-CEDSS. (month 32)

77

Appendix 2: Derivation of ontological concepts from each

workshop

Workshop A, 19 April 2010
Post-it Nominal grouping Ontological type:

Concept, Data
Property (attribute),
Object Property
(relation), Process

Notes What should/could be
done with it if it doesn’t
directly fit such a type

Cold Winter Context/Influence - - Suggests ‘Weather’ as a
concept, with
‘Temperature’ as an
attribute. Also suggests a
context for a scenario (i.e.
an exogenous driver).

What will people
be asked to do
differently in their
lives?

Context/Influence - - Suggests a process, which
will be determined by
scenario (e.g. a particular
intervention or set of
interventions). The process
will thus be an ontological
change of some sort (e.g.
to regulation) or some less
substantial thing like a
‘Communication’.

Influence of policy
on behaviour

Context/Influence - - Suggests a process, which
translates an intervention
into rule changes for
individuals

Change in
government

Context/Influence - - This could be a driver of
what people will be asked
to do differently…

How much do
people care about
it [the policy?]

Between People
and
Context/Influence,
and linked to
Outcome

Relations between
people and policy

This doesn’t capture
‘how much?’

Aging society Between People
and
Context/Influence

- - Suggests attribute ‘Age’,
and individualised
representations of
population-level attributes
‘birth-rate’ and ‘death-
rate’. Also suggests that
changes in these
population-level attributes
need to be representable
as part of a scenario.

Different types of
households, e.g.
pensioners (fuel
poverty)

People Concept ‘Household’
and various
subconcepts.
(Including ‘Household
in Fuel Poverty’)

Is a pensioner a
subclass of household
or of person?

The fuel poverty part
suggests Income as an
attribute of a Household.

Energy users People Concept ‘Energy User’ Should person be a
subclass of Energy
User?

Person Family
 Neighbourhood

People Concepts ‘Person’,
‘Family’,
‘Neighbourhood’ and
relationships between
them e.g. Person
‘memberOf’ Family.
Person ‘locatedIn’
Neighbourhood.

What is the link
between Family and
Household?

Consumers People Concept ‘Consumer’,

78

Post-it Nominal grouping Ontological type:
Concept, Data
Property (attribute),
Object Property
(relation), Process

Notes What should/could be
done with it if it doesn’t
directly fit such a type

or perhaps process of
‘consumption’.

Energy Prices Drivers and
Outcome

Attribute of supplier

Market Drivers and
Outcome

Process of choosing
supplier and/or
consumer goods

Depending on the scale
modelled, consumer
influence on energy
prices in the market
place may not be a
feedback loop we can
introduce.

Rising fuel prices Drivers and
Outcome

- - Part of a scenario, a driving
variable for energy prices.

Equitable fuel
pricing

Intervention - - Suggests some sort of
process, which may be
scenario driven.

Access to
technology

Link between
People and Options

Attribute ‘cost’ of
consumer goods.

Another possibility is to
geographically locate
access. (e.g. broadband
is only available in
certain areas,
restricting who can
work from home; other
goods/services may
also be difficult to
access in remote areas
and/or may be made
available in different
areas at different
times.)

-

Available options Options Relationship of Person
to Consumer Goods
and Energy Suppliers
(also to Employer?)

This would probably be
derived from other
variables.

Goods Options Concept

New gadgets Options Concept Also suggests process
of innovation of new
goods.

Could be scenario driven

Cars Options Concept

Energy suppliers Feed into Options Concept

Market stimulation
(+ve and –ve)

Feed into Options Process Could be scenario driven—
manner of implementation
would be scenario-
dependent.

Standards of living Link between
Outcome and
Context and
Influence

Attribute of household
(or person?)

Should be derived from
other variables—would
this be a subjective or
objective term—i.e. is
standard of living
something that is
measured against

standard criteria, or a
question of individual
perception based on
their own criteria (and
possibly relative to
peers)?

How many people
does it affect? (the
policy)

Outcomes Relationship Person
‘affectedBy’ Policy

Would have to be
derived from other
variables.

Cost of policy Outcomes Attribute of Policy -

Savings overall Outcomes Global attribute ‘total
energy use’ (assuming
that is what was being
considered)

79

Post-it Nominal grouping Ontological type:
Concept, Data
Property (attribute),
Object Property
(relation), Process

Notes What should/could be
done with it if it doesn’t
directly fit such a type

How much does it
cost me?

Outcomes Concept Individual
Policy Cost with
attribute Cost and

relationships
hasPerson and
hasPolicy

If cost is not zero, then
Person has been
affectedBy Policy

How does the
energy policy help
or hinder other
policies?

Outcomes Concept Policy,
Subconcept Energy
Policy, relationships
‘helps’ and ‘hinders’

The relationships would
have to be derived

Scenarios to determine
which policies are
included.

Where do people
live and work?

Constraint and
Infrastructure

Attributes of Person Also suggests Concept ‘Job’
with attribute ‘locatedIn’
and relationship to Person.
Not to mention processes
of ‘commute’ and job and
person selection. (N.B.
some jobs are not
necessarily locatedIn a
specific geographical point,
e.g. travelling salesman,
cab-driver—though they
may have a region.)

Working from
home/policies
regarding
workplace travel

Infrastructure - - Suggests various things.
‘option to work from
home’ as attribute of Job,
process of deciding to
work from home (which
would depend on
availability of resources to
do so).

Policies regarding
workplace travel—is this
company policy or
government? And are we
talking about preferred
modes of transport?

Houses/Dwellings Infrastructure Concepts

Upgrading existing
housing stock

Infrastructure Process affecting
attributes of
Houses/Dwellings

Which ones? Scenario driven.

Building regulation
enforcement

Infrastructure Process Presumably this note is
partly about the extent to
which the enforcement
takes place.

Insulation Infrastructure Attribute of
Houses/Dwelllings;
Process; Subconcept of
Consumer Goods.

80

Workshop B, 23 April 2010
Index card Category Ontological type:

Concept, Data Property
(Attribute), Object
Property (Relation),
Process

Notes What should/could
be done with it if it
doesn’t directly fit
such a type

Owner occupier Household context Concept Not a subclass of
Household
context—rather, an
aspect of it

-

Private tenant Concept -
Social housing Concept Does this refer to

the housing, or to

the occupier?

Access to e.g. District
Heating

 Relation of house to
option

Links to ‘options’
from the previous
meeting. Access in
this sense is
geographical

Suggests District
Heating as an option,
but there are other
options…

Gas/off gas Attribute of location

Rural/urban Attribute of location
Access to finance, time
and knowledge

 Attribute of occupiers (I
assume) or a relation of
occupier to finance,
time, and knowledge if
explicitly represented

Age of occupants and
structure of household

Occupier(s) Age is an attribute of a
person

 Not clear how to
handle household
structure—does this
refer to who is living
in the house and how
they are related?

Gordon Instance of person

Pets Concept
Access to resources:
knowledge, time, finance

 Attributes or relations
(see above)

 Duplicate card?
(Deliberate in order to
put it under two
categories, or a
mistake of
transcription from
post-its?)

Reduce demand
(behavioural)

Values Process? Population scale?
Intervention?

Re-using Process
Embodied energy Between Values and

Location

Attribute What of?

Location of house in
relation to weather

Location Relation of house to
location, and location to
weather (or attribute of
location)

Energy/CO2 embodied in
house

 Attribute of house

Maintenance and repairs Processes
Materials, internal walls
etc.

Construction Type Attributes of house

Location of home for
travel needs

Travel Relation of location to
travel options

This might need to
be broken down a
bit

Travel Process
Personal transport Concept This strikes me as

an abstract concept

Car Concept Subclass of personal
transport?

Bicycle Concept Subclass of personal
transport?

Visitors getting to you
(transport)

 - - Suggests processes of
visiting and being
visited, but also how
they do so, and

81

Index card Category Ontological type:
Concept, Data Property
(Attribute), Object
Property (Relation),
Process

Notes What should/could
be done with it if it
doesn’t directly fit
such a type

constraints on that.

Water heating Water/Water
Heating

Process

Hot water Concept

Shower Concept Could also be a
process

Bath Concept Could also be a
process

Waste water Concept Suggests processes
that produce it

Water usage Process or attribute of a
process

How to represent
attributes of
processes?

Insulation Energy Efficiency
Measures

Process, concept or
attribute

Double Glazing Process, concept or
attribute

Draught proofing Process, concept or
attribute

Smart meters Process, concept or
attribute

Ventilation Process, concept(?) or
attribute

Heating Temperature
control

Process

Open fire (wood/coal) Concept
Cooling Process

Work Access to
finance/disposable
income

Process As contextualised
by the category,
work is a process
providing money.

Several other aspects
of work, e.g. location,
but perhaps these are
not meant by the
stakeholders.

Communication
telephone internet

Appliances Concept

Carbon footprint of items

purchased e.g. TV, etc.

 Attribute

Consumer goods Concept Abstract

Conventional oven Concept

Washing machine Concept
Cleaning Process

Lighting Process or Concept

Entertainment appliances
TV radio computers

 Concept(s) Abstract, with
suggested
subconcepts.

Also suggests
attribute of
appliances—what
they are used for (or
relationship between
them and processes)

Refrigeration Process or Concept Depends on
interpretation

Hoover Process or Concept As process it would
come under
Cleaning

Microwave Concept

CO2 produced from use
of internet

 Attribute

Power tools for
gardening

 Concepts

Hairdrying Process or Concept

Computer Concept
Recreational activities Lifestyle Process

Growing own food Process

Local shop - - Concept of a Shop,
and location relative
to House—issue of

82

Index card Category Ontological type:
Concept, Data Property
(Attribute), Object
Property (Relation),
Process

Notes What should/could
be done with it if it
doesn’t directly fit
such a type

defining ‘Local’. Could
also suggest a process
or a constraint.

Cooking food Process

Socialising/entertaining Processes

Waste/recycling Waste disposal
recycling/reuse

Concept/Process

Building construction (not in a category) Process Assuming what is
meant is the
process of creating
new buildings.

Workshop C, 29 June 2010

Note that in Workshop C, participants were divided into two groups, and each categorised

the other’s cards.

Group 1’s cards

Group 1’s categorization constituted a tree-like structure—this is indicated using ‘>’.

Index card Category
assigned by
Group 1

Category
assigned by
Group 2

Ontological type:
Concept, Data
Property
(Attribute),
Object Property
(Relation),
Process

Notes What should/could
be done with it if it
doesn’t directly fit
such a type

Refrigeration Food >
Activities

Electricity Process - -

Buying food Food >
Activities

Food Process - -

Washing dishes Food >
Activities

Electricity Process - -

Refrigerator Food >
Appliances

Electricity Concept - -

Oven Food >
Appliances

Electricity Concept - -

Kitchen
equipment
(fridge…)

Food >
Appliances

Electricity Concept Abstract concept -

Freezer Food >
Appliances

Electricity Concept - -

Kitchen aid Food >
Appliances

Electricity Concept Abstract concept -

Stove Food >
Appliances

Electricity Concept - -

Microwave Food >
Appliances

Electricity Concept - -

Holidays (flight,
etc.)

Transport >
Activities

Transport Process - -

Travel Transport >
Activities

Transport Process Abstract process -

Commuting Transport >
Activities

Transport Process - -

Car use Transport >
Activities

Transport Process Abstract process -

Car Transport >
Appliances

Transport Concept - -

Double glazing Housing >
Heating >
Appliances

Heating Concept - -

83

Index card Category
assigned by
Group 1

Category
assigned by
Group 2

Ontological type:
Concept, Data
Property
(Attribute),
Object Property
(Relation),
Process

Notes What should/could
be done with it if it
doesn’t directly fit
such a type

Insulation Housing >

Heating >
Appliances

Heating Concept - -

Green roof Housing >
Heating >
Appliances

Heating Concept - -

Boiler Housing >
Heating >
Appliances

Heating Concept - -

Hot water Housing >
Heating >
Appliances

Heating Concept - -

Bath-shower Housing >
Heating >
Appliances

Heating Concept(s) - -

Stereo Housing >
Electricity >
Appliances

Electricity Concept - -

Media (TV,
Radio,
Computer

Housing >
Electricity >
Appliances

Electricity Concept(s) …with abstract concept -

(Digital) TV Housing >
Electricity >
Appliances

Electricity Concept(s) Possible abstract concept
TV

-

Wireless Housing >
Electricity >
Appliances

Electricity Concept I assume they mean WiFi
rather than a radio…

-

Stand-by Housing >
Electricity >
Appliances

Electricity Data property? It’s a state of an electronic
good, or perhaps an
option it has (only things
with the option can have
the state…)

Phone Housing >
Electricity >
Appliances

Electricity Concept - -

iPod Housing >
Electricity >
Appliances

Electricity Concept - -

Computer Housing >
Electricity >
Appliances

Electricity Concept - -

Washing
machine

Housing >
Electricity >
Appliances

Electricity Concept - -

Vacuum cleaner Housing >
Electricity >
Appliances

Electricity Concept Could also be a process, I
suppose…

-

Light Housing >
Electricity >

Appliances

Electricity Concept N.B. This card is obscured
in the Group 1/1 photo,

but this is what I deduce it
to be.

-

Air
condition[ing]

Housing >
Electricity >
Appliances

Electricity Concept or
Process

- -

Repairs (electric
tools)

Housing >
Electricity >
Appliances

Electricity Concept or
Process

It could be a Process (i.e.
of DIY), or an abstract
concept of the tools used
to do it.

-

Shaving thing Housing >
Electricity >
Activities

Electricity Process or
Concept

(It could be the concept of
a shaver)

-

Garden sewing Housing >
Electricity >

Consumption Process or
Concept

Not clear what is meant by
this card—the activity of

-

84

Index card Category
assigned by
Group 1

Category
assigned by
Group 2

Ontological type:
Concept, Data
Property
(Attribute),
Object Property
(Relation),
Process

Notes What should/could
be done with it if it
doesn’t directly fit
such a type

Activities sewing seeds in the

garden isn’t a particularly
energy-consuming one?
Do they mean mowing the
lawn? Concept could be
tools for the activity.

Washing clothes Housing >
Electricity >
Activities

Electricity Process - -

Cleaning of the
house

Behaviour Electricity Process - -

Unnecessary
things (bought
but never used)

Indirect
energy use

Consumption Concept Abstract concept -

Money spent Indirect
energy use

Consumption Data property Could also be a process -

Electricity and
heating at the
workplace

Indirect
energy use

Electricity - - Suggests concepts of
work, activities
associated with that,
equipment used, and
energy consumption
resulting.

Carbon
emissions

Indirect
energy use

Can’t find it… Data property - -

Clothes Indirect
energy use

Consumption Concept Could also be a data
property describing the
embodied energy (as for
other categorised under
‘Indirect energy use’

-

Flowers (buy) Indirect
energy use

Consumption Process - -

Pets (food) Indirect
energy use

Food Concept - -

Imported food Indirect
energy use

Food Concept - -

Meat Indirect
energy use

Food Concept - -

Group 2’s cards
Index card Category

assigned by
Group 2

Category
assigned by
Group 1

Ontological type:
Concept, Data
Property
(Attribute),

Object Property
(Relation),
Process

Notes What
should/could be
done with it if it
doesn’t directly

fit such a type

Size of house [None clearly
assigned]

Heating Data property - -

of people living there
[in the house]

[None clearly
assigned]

Heating Data property (or
relation if people
are explicitly
represented)

- -

Washing machine Washing Appliances Concept - -
Buying and washing
clothes

Washing Cleaning Process - -

Washing [x2] Washing [Not used] Process - -

Bath shower Washing Cleaning Process or
Concept

- -

Heated swimming pool Heating Conspicious

[?sp:
conspicuous]

Concept - -

85

Index card Category
assigned by
Group 2

Category
assigned by
Group 1

Ontological type:
Concept, Data
Property
(Attribute),
Object Property
(Relation),
Process

Notes What
should/could be
done with it if it
doesn’t directly
fit such a type

(decadent)

activities
Warm water heating Heating Cleaning Process - -

Showering Heating Cleaning Process - -

Hot water Heating [Not used] Concept - -
Insulation [x2] Heating Heating Concept - -

Heating [x5] Heating [Made this a
category]

Process - -

How warm the house is
kept in winter

Heating Heating Data property - -

Insulation and double
glazing

Heating [Not used] Concept (or data
property of
house, depending
on how it is
represented)

- -

Windows Heating [Not used] Concept - -

Isolation of the floor Heating [Not used] Data property Not clear what is
meant by this… Did
they mean
‘insulation’? Or are
they referring to the
floor not being in
contact with the
ground?

-

Using the internet Appliances Conspicious
[?sp:
conspicuous]
(decadent)
activities

Process - -

Telephone chargers Appliances Appliances Concept - -

Digital TV Appliances Appliances Concept - -

Computer [x3] Appliances Appliances Concept - -
TV [x2] Appliances Appliances Concept - -

PC, TV, Radio Appliances Appliances Concept - -

Household level
telecommunications
(phones, TV,
videoplayer, mobile
phones)

Appliances Appliances Concept - -

DVD player Appliances Appliances Concept - -
Air conditioning [x2] Appliances Appliances Concept or

Process
With all appliances,
there is the item
itself, and the use
thereof

-

Household electric
machines

Appliances Appliances Concept - -

Blender Appliances Cooking Concept - -
Electric appliances Appliances [Not used] Concept - -

Printer Appliances Appliances Concept - -

Keeping the house
(repairing … grass
mowing)

Appliances Heating Process - -

Lighting [x3] Lighting Lighting Concept - -
Electricity Lighting [Not used] Concept - -

Using an aquarium and
keeping pets (food for
pets)

Consumption Conspicious
[?sp:
conspicuous]
(decadent)
activities

Process - -

Plastic toys Consumption Conspicious
[?sp:
conspicuous]

Concept - -

86

Index card Category
assigned by
Group 2

Category
assigned by
Group 1

Ontological type:
Concept, Data
Property
(Attribute),
Object Property
(Relation),
Process

Notes What
should/could be
done with it if it
doesn’t directly
fit such a type

(decadent)

activities
Shopping goods into the
house

Consumption [They declared
this a category
in its own right]

Process - -

Food consumption,
freezers

Kitchen Cooking Process, Concept - -

Food Kitchen Cooking Concept - -
Refrigerator [x2] Kitchen Cooking Concept - -

Microwave Kitchen Cooking Concept - -

Cooking [x2] Kitchen Cooking Process - -
Buying and cooking
food

Kitchen Cooking Process - -

Cars, public transport Transport [Not used] Concept - -

Cars [x2] Transport Transport Concept - -
Car use Transport [Not used] Process - -

Vacation [x2] Transport Transport Process - -

Public transport Transport Transport Concept - -

Flights Transport Transport Concept - -
Travel Transport Transport Process - -

How many cars Transport Transport Data property of
household, or
relation if cars are
explicitly
represented

- -

Commuting Transport Transport Process - -

87

Appendix 3: Screenshot of CEDSS Model

88

Appendix 4: CEDSS Code
;; CEDSS version 3.1, an agent-based model of household energy demand

;; Copyright (C) 2011 Macaulay Land Use Research Institute

;;

;; This program is free software: you can redistribute it and/or modify

;; it under the terms of the GNU General Public License as published by

;; the Free Software Foundation, either version 3 of the License, or

;; (at your option) any later version.

;;

;; This program is distributed in the hope that it will be useful,

;; but WITHOUT ANY WARRANTY; without even the implied warranty of

;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

;; GNU General Public License for more details.

;;

;; You should have received a copy of the GNU General Public License

;; along with this program. If not, see <http://www.gnu.org/licenses/>.

;; Enable the profiler, arrays and "tables" (property-value lists) to be used.

extensions [array table profiler]

;;

;; ;;

;; Globals ;;

;; ;;

;;

globals [

 patch-legend

 energy-price ;; the current table of fuel-type to price

 energy-price-list ;; a list of tables of fuel-type to price

 equipment-descriptor-scores

 patchset-data

 use-social-links

 steps-all-household-total-energy-use

 steps-all-household-appliance-energy-use

 steps-all-household-heating-energy-use

;; energy-use

;; steps-all-household-total-electricity-use

;; steps-all-household-total-gas-use

;; steps-all-household-total-coal-use

;; steps-all-household-total-oil-use

;; steps-all-household-total-LPG-use

 all-household-capital-reserves

 total-links

 household-transition-matrix-list

 current-household-transition-matrix

 named-in-migrants ;; a table of household type and dwelling type to a list of hh data

 in-migrant-types ;; a table of household type and dwelling type to hh dists

 in-migrant-links ;; a table of id to list of ids

 next-id

 patch-links ;; table of hh type and dwelling type to probability of link

 link-radii-list

 radius-links ;; table of hh type and dwelling type to probability of link in radii

 link-patch-types-list

 patch-type-links ;; table of hh type and dwelling type to probability of patch link

 patch-blocks ;; list of block-ids

 next-block-id

 usage-mode-matrix ;; table of goal frame to table of usage mode conditions

 household-types-list

 dwelling-types-list

 usage-modes-list

 steps-list

 dwelling-temp-colours

 new-subcategories

 land-fill

 tenure-types-list

 insulation-updates

 maximum-in-category-table

 initial-hh-appliances

 initial-hh-dw-type-appliances

 initial-hh-address-appliances

 ;; Remaining lines are for dummy variables used in debugging

 test-list

 test-item

 current-appliances

]

;;

;; ;;

;; Breeds ;;

;; ;;

;;

89

patches-own [

 patch-type

 block-id

]

;;

;; dwellings

;;

;; Dwellings are locations where households live. Each dwelling belongs to one

;; household, and is located on one patch in the space. Each patch may, however

;; contain more than one dwelling

breed [dwellings dwelling]

dwellings-own [

 dwelling-id

 dwelling-type

 tenure ;;; 'owned' or 'rented' (or something ending in 'rented')

]

;;

;; households

;;

;; Households are the main 'agents' (not in the NetLogo sense) of the model.

;; They are responsible for buying appliances and using energy

breed [households household]

households-own [

 household-id

 household-type

 steply-net-income

;; The above variable name remains the dame, but it becomes a list.

;; The variable first-step-available is added

 first-step-available

 capital-reserve

 hedonism

 gain-orientation

 greenness

 goal-frame

 usage-mode

 planning-horizon

 frame-adjustment

 breakdown-list

 wish-list

 steps-total-energy-use

]

;;

;; appliances

;;

;; Appliances are energy consuming devices used by Households

breed [appliances appliance]

appliances-own [

 category

 subcategory

 name

 essential?

 hedonic-score

 cost-list

 embodied-energy

 energy-rating ;; lower numbers are better

 energy-rating-provided?

 breakdown-probability

 first-step-available

 last-step-available

 last-step-available-unbounded?

]

;;

;; consumption-atterns

;;

;; Patterns of fuel consumption for appliances

breed [consumption-patterns consumption-pattern]

consumption-patterns-own [

 for-household-type

 for-dwelling-type

 for-tenure-type

 for-purpose

 in-usage-mode

 in-step

]

90

;;

;; fuel

;;

;; Fuel is used by appliances

breed [fuels fuel]

fuels-own [

 fuel-type

 unit

 kWh-per-unit

 total-kWh ;; for observation

 fuel-plot-colour ;; for observation

]

;;

;; insulation

;;

;; Insulation saves fuel

breed [insulations insulation]

insulations-own [

 insulation-state ;; type of insulation

 insulation-dwelling-type ;; dwelling type to which the fuel use factor applies

 fuel-use-factor ;; It is assumed the same factor applies to all fuel types

]

;;

;; supplier

;;

;; Suppliers sell fuel

; breed [suppliers supplier]

; suppliers-own [

; supplier-id

;]

;;

;; links

;;

;; Links between various kinds of object/agent

;; Households own appliances

directed-link-breed [ownerships ownership]

ownerships-own [

 broken?

 age

]

;; Using appliances for a particular purpose has a consumption pattern that

;; consumes fuel

directed-link-breed [consumes consume]

directed-link-breed [uses use]

uses-own [

 units-per-use

]

;; Insulations insulate dwellings

directed-link-breed [insulates insulate]

;; Insulations have upgrade costs for each dwelling type

directed-link-breed [upgrades upgrade]

upgrades-own [

 upgrade-cost ;; table of dwelling-type to cost

]

;; Suppliers supply fuel

; directed-link-breed [supplies supply]

; supplies-own [

; cost-per-unit

; CO2e-per-unit

; renewably?

;]

;; Households live in dwellings

directed-link-breed [addresses address]

;; Appliances can replace each other

directed-link-breed [replacements replacement]

;; Appliances are similar to each other

;; Commented out as currently unused

;;undirected-link-breed [similarities similarity]

91

;;similarities-own [

;; score

;;]

;; Households have social links with each other

undirected-link-breed [social-links social-link]

social-links-own [

 n-visits

]

;;

;; ;;

;; Button procedures ;;

;; ;;

;;

;;

;; profile

;;

;; uses the profiler to get timings for running the model

to profile

 profiler:start

 setup

 repeat halt-after [

 go

]

 profiler:stop

 print profiler:report

 print profile-setup

 print profile-go

 profiler:reset

end

;;

;; setup

;;

;; set up the model for a run

to setup

 file-close-all ;; Added by GP as if NetLogo stops with an error whilst reading a file, it

doesn't close it

 show-licence-message

 ;; (for this model to work with NetLogo's new plotting features,

 ;; __clear-all-and-reset-ticks should be replaced with clear-all at

 ;; the beginning of your setup procedure and reset-ticks at the end

 ;; of the procedure.)

 __clear-all-and-reset-ticks ;; built-in procedure, sets all global variables to zero.

 setup-files

 output-print "setup-files"

 ifelse social-link-matrix-file = false or social-link-matrix-file = "null" or length social-

link-matrix-file = 0 [

 set use-social-links false

]

 [

 set use-social-links true

]

 setup-globals

 output-print "setup-globals"

 setup-insulation

 output-print "setup-insulation"

 setup-patches

 output-print "setup-patches"

 setup-energy

 ;; Order of text two calls reversed 20111002 to allow initial household ownership of appliances

 ;; to be specified in the households file.

 ;; Nick

 output-print "setup-energy"

 setup-appliances

 output-print "setup-appliances"

 setup-households

 output-print "setup-households"

 show-changes

 let colour-array array:from-list [red orange brown yellow green lime turquoise

 cyan sky blue violet magenta pink]

 let i 0

 set-current-plot "Appliances"

 foreach remove-duplicates [category] of appliances [

 create-temporary-plot-pen ?

 set-plot-pen-color array:item colour-array

 ((i mod (array:length colour-array)) + int(i / (array:length colour-array)))

 set i i + 1

]

 output-print "removed-duplicates"

92

 if count fuels > 1 [

 set-current-plot "Total energy use"

 ask fuels [

 create-temporary-plot-pen fuel-type

 set-current-plot-pen fuel-type

 set-plot-pen-color fuel-plot-colour

]

]

 reset-ticks

 output-print "reset-ticks"

end

;;

;; go

;;

;; perform one time step of the model

to go

 set current-appliances appliances with [first-step-available <= ticks and (last-step-available-

unbounded? or last-step-available >= ticks)]

 ask fuels [

 set total-kWh 0

]

 ask ownerships [

 set age age + 1

]

 calculate-breakdowns

 update-globals

 ask households [

 step

]

 tick

 show-changes

 my-update-plots

 output-print timer

 set steps-all-household-appliance-energy-use calculate-appliance-energy-use

 set steps-all-household-heating-energy-use calculate-heating-energy-use

 output-print steps-all-household-appliance-energy-use

 output-print steps-all-household-heating-energy-use

 if (ticks = halt-after) [

 stop

]

end

;;

;; calculate-appliance-energy-use

;;

;; Calculate appliance energy use for a step, to be output at the end of each step

;;

to-report calculate-appliance-energy-use

 let appliance-energy-use 0

 ask fuels with [fuel-type = "appliance-gas" or fuel-type = "appliance-elect"] [

 set appliance-energy-use appliance-energy-use + total-kWh

]

 report appliance-energy-use

end

;;

;; calculate-heating-energy-use

;;

;; Calculate heating energy use for a step, to be output at the end of each step

;;

to-report calculate-heating-energy-use

 let heating-energy-use 0

 ask fuels with [fuel-type != "appliance-gas" and fuel-type != "appliance-elect"] [

 set heating-energy-use heating-energy-use + total-kWh

]

 report heating-energy-use

end

;;

;; my-update-plots

;;

;; Update all the plots

to my-update-plots

 set-current-plot "Total energy use"

 set-current-plot-pen "default"

 plot steps-all-household-total-energy-use

 if count fuels > 1 [

93

 ask fuels [

 set-current-plot-pen fuel-type

 plot total-kWh

]

]

 set-current-plot "Total capital reserves"

 plot all-household-capital-reserves

;; This and similar conditionals condition are included to make the use of social links optional.

;; Nick

 if use-social-links [

 set-current-plot "Number of links"

 let link-count sum [count social-link-neighbors] of households

 plot link-count

 set total-links total-links + link-count

]

 set-current-plot "Appliances"

 set-current-plot-pen "default"

 plot count ownerships

 foreach remove-duplicates [category] of appliances [

 set-current-plot-pen ?

 let osum 0

 ask households [

 set osum osum + count (out-ownership-neighbors with [category = ?])

]

 plot osum

]

 set-current-plot "Land fill"

 let i 0

 plot-pen-reset

 ;; output-print sort remove-duplicates [subcategory] of appliances

 foreach sort remove-duplicates [subcategory] of appliances [

 set i i + 1

 let subcat ?

 ;; output-print subcat

 ;; output-print land-fill

 plot length (filter [[subcategory] of ? = subcat] land-fill)

 if ticks = 1 [

 print (word "Land fill plot " i " is subcategory " subcat)

]

]

 set-current-plot "Goal frame"

 set-current-plot-pen "hedonistic"

 plot count households with [goal-frame = "hedonistic"]

 set-current-plot-pen "gain"

 plot count households with [goal-frame = "gain"]

 set-current-plot-pen "norm"

 plot count households with [goal-frame = "norm"]

 set-current-plot "Goal frame parameters"

 set-current-plot-pen "hedonism"

 plot mean [hedonism] of households

 set-current-plot-pen "gain"

 plot mean [gain-orientation] of households

 set-current-plot-pen "norm"

 plot mean [greenness] of households

 set-current-plot "Visits per link"

 set-current-plot-pen "mean"

 if use-social-links [

 plot mean [n-visits] of social-links

 set-current-plot-pen "min"

 plot min [n-visits] of social-links

 set-current-plot-pen "max"

 plot max [n-visits] of social-links

]

end

;;

;; ;;

;; Procedures for setting up/creating the model ;;

;; ;;

;; Note that these procedures do not include those for reading/writing to a ;;

;; file. There is a separate section in the code for those. ;;

;; ;;

;;

;;

;; setup-files

;;

;; Set up the file names to use.

to setup-files

 if user-files [

94

 user-message "Choose patch legend file (1)"

 set patch-legend-file user-file

 user-message "Choose patch file (2)"

 set patch-file user-file

 user-message "Choose dwellings file (3)"

 set dwellings-file user-file

 user-message "Choose energy suppliers file (14)"

 set suppliers-file user-file

 user-message "Choose fuel file (12)"

 set fuel-file user-file

 user-message "Choose usage mode matrix file (9)"

 set usage-mode-matrix-file user-file

 user-message "Choose appliances file (10)"

 set appliances-file user-file

 user-message "Choose appliances replacement file (11)"

 set appliances-replacement-file user-file

 ;; user-message "Choose appliances similarity file (15)"

 ;; set appliances-similarity-file user-file

 user-message "Choose appliances fuel file (13)"

 set appliances-fuel-file user-file

 user-message "Choose maximum in category file (19)"

 set maximum-in-category-file user-file

 user-message "Choose household initial appliances file (20)"

 set household-init-appliance-file user-file

 ifelse use-household-file [

 user-message "Choose household file (4)"

 set household-file user-file

]

 [

 set household-file false

]

 user-message "Choose household transition matrix file (5)"

 set household-transition-matrix-file user-file

 user-message "In-migrant household file (6)"

 set in-migrant-household-file user-file

 user-message "Choose social link matrix file (7) (click cancel if you do not want social

links)"

 set social-link-matrix-file user-file

 ifelse use-social-link-file [

 user-message "Choose social link file (8)"

 set social-link-file user-file

]

 [

 set social-link-file false

]

 user-message "Choose insulation file (16)"

 set insulation-file user-file

 user-message "Choose insulation upgrade file (17)"

 set insulation-upgrade-file user-file

 user-message "Choose insulation update file (18)"

 set insulation-update-file user-file

 set user-files false

]

end

;;

;; setup-globals

;;

;; Set up the global variables. Read in the energy price file and equipment data

to setup-globals

 set total-links 0

 set next-id 0

 set next-block-id 0

 set steps-list n-values steps-per-year [? + 1]

 ;; nvalues steps-per-year [? + 1] produces the list [1 2 3... <steps-per-year>

 set dwelling-temp-colours array:from-list [102 blue cyan turquoise green

 yellow orange red pink 138]

 set land-fill []

 set in-migrant-links table:make

 ;; Added 20111015 to allow limits to be set on the number of appliances

 ;; each type of household can own of each category of appliance

 set maximum-in-category-table read-table2 maximum-in-category-file

 set initial-hh-appliances false

end

;;

;; setup-insulation

;;

95

;; Set up the insulation

to setup-insulation

 read-insulation-file insulation-file

 read-insulation-upgrade-file insulation-upgrade-file

 read-insulation-update-file insulation-update-file

end

;;

;; setup-patches

;;

;; Read in the patch layout and social link files

to setup-patches

 set patch-legend read-table patch-legend-file

 foreach table:keys patch-legend [

 if(is-string? (table:get patch-legend ?)) [

 table:put patch-legend ? (read-from-string (table:get patch-legend ?));

]

]

 read-patch-layout patch-file

 read-dwellings-file dwellings-file

 set dwelling-types-list remove-duplicates [dwelling-type] of dwellings

 set tenure-types-list remove-duplicates [tenure] of dwellings

 determine-patch-type-blocks

end

;;

;; setup-appliances

;;

;; Set up the appliances

to setup-appliances

 read-appliances appliances-file

 output-print "read-appliances"

 ask households [

 ;; The following functionality moved into setup-households

 ;; create-ownerships-to appliances with [first-step-available < 0] [

 ;; set hidden? true

 ;; set broken? false

 ;; set age 0

 ;;]

 ;; set breakdown-list []

]

 read-replacements appliances-replacement-file

 output-print "read-replacements"

 ;; read-appliance-similarity appliances-similarity-file

 read-appliances-fuel-use appliances-fuel-file

 output-print "read-appliances-fuel-use"

 if(household-init-appliance-file != false and household-init-appliance-file != "null") [

 read-initial-appliances-file household-init-appliance-file

 output-print "read-initial-appliances-file"

]

 ask appliances with [not last-step-available-unbounded?] [

 if count my-out-replacements = 0 [

 output-print (word "*** Warning: There are no replacements for appliance \"" name "\"")

]

]

end

;;

;; setup-energy

;;

;; Set up energy/fuel and suppliers

to setup-energy

 read-fuel fuel-file

 read-energy-suppliers suppliers-file

 set usage-mode-matrix read-matrix usage-mode-matrix-file

 set usage-modes-list []

 foreach table:keys usage-mode-matrix [

 let umodes table:get usage-mode-matrix ?

 foreach table:keys umodes [

 set usage-modes-list fput ? usage-modes-list

]

]

 set usage-modes-list remove-duplicates usage-modes-list

end

;;

;; setup-households

;;

;; Create and intialise the households and related global variables

96

to setup-households

 ifelse use-household-file [

 read-households-file household-file

 set household-types-list remove-duplicates [household-type] of households

 ;; output-print (word "household-types-list: " household-types-list)

 ask households [

 allocate-initial-appliances

]

]

 [

 set household-types-list []

]

 set household-transition-matrix-list read-numeric-ts-matrix

 household-transition-matrix-file ["in-migrant"]

 ;; output-print (word "household-transition-matrix-list: " household-transition-matrix-list)

 foreach table:keys (first household-transition-matrix-list) [

 if not member? ? household-types-list [

 set household-types-list fput ? household-types-list

]

]

 read-in-migrant-file in-migrant-household-file

 if use-social-links [

 read-social-link-matrix-file social-link-matrix-file

]

 ;; Allocate people from in-migrant file to empty dwellings

 ;; Next line changed to make it optional to fill empty properties.

 if fill-empty-properties and (count dwellings with [count in-address-neighbors = 0]) > 0 [

 foreach (sort dwellings with [count in-address-neighbors = 0]) [

 let this-dwelling ?

 let dwt-type (word ([tenure] of this-dwelling) ":" ([dwelling-type] of this-dwelling))

 let hh-types []

 foreach table:keys in-migrant-types [

 if table:has-key? (table:get in-migrant-types ?) dwt-type [

 set hh-types fput ? hh-types

]

]

 ifelse length hh-types > 0 [

 create-households 1 [

 create-address-to this-dwelling [

 set hidden? true

]

 set-household-nlogo-params

 set household-type one-of hh-types

 set household-id "new" ;; It will be set to a unique value in resample-parameters

 resample-parameters

]

]

 [

 output-print (word "*** Warning: Cannot create household for dwelling "

 [dwelling-id] of this-dwelling

 ": no household types associated with dwelling/tenure type "

 dwt-type " in the in-migrant household file")

]

]

]

 ask households [

 if use-social-links [

 make-random-social-links

]

 set breakdown-list []

 set wish-list []

 set goal-frame choose-goal-frame

]

 if use-social-link-file [

 read-social-link-file social-link-file

]

end

;;

;; allocate-initial-appliances

;;

;; Allocate the initial appliances of a household

to allocate-initial-appliances

 ;; Default initial appliances defined by first/last step available in the

 ;; appliance file

97

 create-ownerships-to appliances with [first-step-available < 0 and last-step-available <= ticks]

[

 set hidden? true

 set broken? false

 set age 0

]

 ;; Has initial appliance list been specifically defined for this household?

 if initial-hh-appliances != false [

 ifelse table:has-key? initial-hh-appliances household-id [

 foreach (table:get initial-hh-appliances household-id) [

 create-ownerships-to appliances with [name = ?] [

 set hidden? true

 set broken? false

 set age 0

]

]

 table:remove initial-hh-appliances household-id

]

 [

 let my-dw one-of out-address-neighbors

 let hh-address (word household-type ":" ([dwelling-id] of my-dw))

 ;; Has initial appliance list been defined for this household type at this

 ;; specific address?

 ifelse table:has-key? initial-hh-address-appliances hh-address [

 foreach (table:get initial-hh-address-appliances hh-address) [

 create-ownerships-to appliances with [name = ?] [

 set hidden? true

 set broken? false

 set age 0

]

]

]

 [

 let hh-dw-type (word household-type ":" ([tenure] of my-dw) ":" ([dwelling-type] of my-

dw))

 ;; Has initial appliance list been defined for this household type at this

 ;; dwelling type and tenure combination?

 if table:has-key? initial-hh-dw-type-appliances hh-dw-type [

 foreach (table:get initial-hh-dw-type-appliances hh-dw-type) [

 create-ownerships-to appliances with [name = ?] [

 set hidden? true

 set broken? false

 set age 0

]

]

]

]

]

]

end

;;

;; set-household-nlogo-params

;;

;; Set the netlogo parameters of a household

to set-household-nlogo-params

 set shape "face happy"

 set size 0.5

 set xcor [xcor] of [other-end] of one-of my-out-addresses

 set ycor [ycor] of [other-end] of one-of my-out-addresses

end

;;

;; determine-patch-type-blocks

;;

;; Determine sets of patches in blocks of common patch-types. This uses two

;; approaches, an efficient one that works if the world is not wrapped, and

;; a less efficient one that can be used otherwise.

to determine-patch-type-blocks

 ask patches [

 set block-id 0

]

 ifelse (count [neighbors4] of patch min-pxcor min-pycor) > 2 [

 ;; the world wraps in one or more dimensions

 ask patches [

 set-block-id ;; This approach is a bit inefficient

]

]

98

 [

 ;; the world does not wrap -- use more efficient procedure

 let px min-pxcor

 while [px <= max-pxcor] [

 let py min-pycor

 while [py <= max-pycor] [

 ask patch px py [

 let my-patch-type patch-type

 let nbrs neighbors4 with [patch-type = my-patch-type and (not (block-id = 0))]

 ifelse count nbrs > 0 [

 ;; We can get the patch ID from the Von-Neumann neighbours

 let idlist [block-id] of nbrs

 set block-id first idlist

 set idlist but-first idlist

 foreach idlist [

 ;; Deal with neighours with different block-ids

 if ? != block-id [

 ask patches with [block-id = ?] [

 set block-id ?

]

]

]

]

 [

 ;; All the neighbours have block-id 0 or different patch-type

 set next-block-id next-block-id + 1

 set block-id next-block-id

]

]

 set py py + 1

]

 set px px + 1

]

]

 ;; Get the list of unique block-ids of patches

 set patch-blocks (remove-duplicates ([block-id] of patches))

end

;;

;; set-block-id

;;

;; Set the block-id of a patch (recursively checking all neighbouring patches)

to set-block-id

 let my-patch-type patch-type

 ifelse block-id = 0 [

 let same-nbrs neighbors4 with [patch-type = my-patch-type]

 ifelse count same-nbrs > 0 [

 let same-nbrs-block same-nbrs with [block-id != 0]

 ifelse count same-nbrs-block > 0 [

 ;; Some neighbours with the same patch-type have a block-id we can use

 let block-ids [block-id] of same-nbrs-block

 set block-id first block-ids

 set block-ids but-first block-id

 let my-block-id block-id

 foreach block-ids [

 ;; Recursively ensure all neighbours with the same patch-type have

 ;; the same block-id

 if ? != block-id [

 ask patches with [block-id = ?] [

 set-block-id-to my-block-id

]

]

]

 ;; Recursively ensure all neighbours with the same patch-type that

 ;; have not had their block-id set yet have this block-id

 ask same-nbrs with [block-id = 0] [

 set-block-id-to my-block-id

]

]

 [

 ;; There are no neighbours from which to get a block-id: Set this

 ;; block-id to the next one, and recursively set the block-id of

 ;; neighbours with the same patch-type

 set next-block-id next-block-id + 1

 set block-id next-block-id

 ask same-nbrs [

 set-block-id-to next-block-id

]

]

]

 [

99

 ;; no neighbours with the same patch-type -- just set this patch's

 ;; unique block id.

 set next-block-id next-block-id + 1

 set block-id next-block-id

]

]

 [

 ;; block-id has already been set -- recursively ensure neighbours with

 ;; the same patch-type have the same block-id

 let my-block-id block-id

 ask neighbors4 with [patch-type = my-patch-type and block-id != my-block-id] [

 set-block-id-to my-block-id

]

]

end

;;

;; set-block-id-to [a-block-id]

;;

;; Recursively set the block-id of patches with the same patch-type

to set-block-id-to [a-block-id]

 set block-id a-block-id

 let my-patch-type patch-type

 ask neighbors4 with [patch-type = my-patch-type and block-id != a-block-id] [

 set-block-id-to a-block-id

]

end

;;

;; make-random-social-links

;;

;; Use the rules defined in the social-link-matrix-file to create random social

;; links among households

to make-random-social-links

 let dw-type [dwelling-type] of one-of out-address-neighbors

 ;; the above assumes one address per household

 let my-type (word household-type ":" dw-type)

 let my-anydtype (word household-type ":*")

 let my-anyhtype (word "*:" dw-type)

 ifelse table:has-key? patch-links my-type [

 make-random-social-links-type my-type

]

 [

 ifelse table:has-key? patch-links my-anydtype [

 make-random-social-links-type my-anydtype

]

 [

 ifelse table:has-key? patch-links my-anyhtype [

 make-random-social-links-type my-anyhtype

]

 [

 if table:has-key? patch-links "*:*" [

 make-random-social-links-type "*:*"

]

]

]

]

end

;;

;; make-random-social-links-type

;;

;; Make random social links for the specified household:dwelling type

to make-random-social-links-type [key]

 make-patch-social-links (table:get patch-links key)

 if length link-radii-list > 0 [

 make-radius-social-links (table:get radius-links key)

]

 if length link-patch-types-list > 0 [

 make-patch-type-social-links (table:get patch-type-links key)

]

end

;;

;; make-patch-social-links

;;

;; Make social links with households on the same patch

to make-patch-social-links [link-table]

 let hh self

 ;; Nick. "with [self != hh]" added 20111027

100

 ask households-here with [self != hh] [

 let dw-type [dwelling-type] of one-of out-address-neighbors

 let this-type (word household-type ":" dw-type)

 let this-anydtype (word household-type ":*")

 let this-anyhtype (word "*:" dw-type)

 ifelse table:has-key? link-table this-type [

 make-patch-social-links-type link-table this-type hh

]

 [

 ifelse table:has-key? link-table this-anydtype [

 make-patch-social-links-type link-table this-anydtype hh

]

 [

 ifelse table:has-key? link-table this-anyhtype [

 make-patch-social-links-type link-table this-anyhtype hh

]

 [

 if table:has-key? link-table "*:*" [

 make-patch-social-links-type link-table "*:*" hh

]

]

]

]

]

end

;;

;; make-patch-social-links-type

;;

;; Construct a social link with households of the specified hh:dw type

to make-patch-social-links-type [link-table key hh]

 let link-p read-from-string table:get link-table key

 if random-float 1 < link-p and not social-link-neighbor? hh [

 create-social-link-with hh

]

end

;;

;; make-radius-social-links

;;

;; Make social links with households within specified distances

to make-radius-social-links [link-table]

 let hh self

 let hh-patch [patch-here] of hh

 ask households [

 let dw-type [dwelling-type] of one-of out-address-neighbors

 let this-type (word household-type ":" dw-type)

 let this-anydtype (word household-type ":*")

 let this-anyhtype (word "*:" dw-type)

 ifelse table:has-key? link-table this-type [

 make-radius-social-links-type link-table this-type hh hh-patch

]

 [

 ifelse table:has-key? link-table this-anydtype [

 make-radius-social-links-type link-table this-anydtype hh hh-patch

]

 [

 ifelse table:has-key? link-table this-anyhtype [

 make-radius-social-links-type link-table this-anyhtype hh hh-patch

]

 [

 if table:has-key? link-table "*:*" [

 make-radius-social-links-type link-table "*:*" hh hh-patch

]

]

]

]

]

end

;;

;; make-radius-social-links-type

;;

;; Make social links within specified distances using the given hh:dw type

to make-radius-social-links-type [link-table key hh hh-patch]

 (foreach link-radii-list (table:get link-table key) [

 if [distance hh-patch] of patch-here <= ?1 [

 if random-float 1 < read-from-string ?2 and not social-link-neighbor? hh [

 create-social-link-with hh

]

]

])

end

101

;;

;; make-patch-type-social-links

;;

;; Make social links with households in or bordering shared patch blocks

to make-patch-type-social-links [link-table]

 let hh self

 let hh-patch [patch-here] of hh

 let hh-nbr-block-ids [block-id] of ([neighbors] of hh-patch)

 ask households [

 let dw-type [dwelling-type] of one-of out-address-neighbors

 let this-type (word household-type ":" dw-type)

 let this-anydtype (word household-type ":*")

 let this-anyhtype (word "*:" dw-type)

 ifelse table:has-key? link-table this-type [

 make-patch-type-social-links-type link-table this-type hh hh-patch hh-nbr-block-ids

]

 [

 ifelse table:has-key? link-table this-anydtype [

 make-patch-type-social-links-type link-table this-anydtype hh hh-patch hh-nbr-block-ids

]

 [

 ifelse table:has-key? link-table this-anyhtype [

 make-patch-type-social-links-type link-table this-anyhtype hh hh-patch hh-nbr-block-ids

]

 [

 if table:has-key? link-table "*:*" [

 make-patch-type-social-links-type link-table "*" hh hh-patch hh-nbr-block-ids

]

]

]

]

]

end

;;

;; make-patch-type-social-links-type

;;

;; Make social links with households of specified hh:dw type in or bordering

;; shared patch blocks

to make-patch-type-social-links-type [link-table key hh hh-patch hh-nbr-block-ids]

 (foreach link-patch-types-list (table:get link-table key) [

 ifelse ?1 = "dwelling" [

 ;; dwelling patch type -- both households' dwellings must be in the

 ;; same block...

 if [block-id] of hh-patch = [block-id] of patch-here [

 if random-float 1 < read-from-string ?2 and not social-link-neighbor? hh [

 create-social-link-with hh

]

]

]

 [

 ;; ... for all other patch types, both households' dwellings must be

 ;; neighbours of the same block of the required type

 let my-nbr-block-ids [block-id] of (([neighbors] of patch-here) with [patch-type = ?1])

 if length intersection hh-nbr-block-ids my-nbr-block-ids > 0 [

 if random-float 1 < read-from-string ?2 and not social-link-neighbor? hh and hh != self [

 create-social-link-with hh

]

]

]

])

end

;;

;; ;;

;; Procedures for running a timestep with the model ;;

;; ;;

;;

;;

;; update-globals

;;

;; Update globals at the start of a step

to update-globals

 if (ticks < length energy-price-list) [

 set energy-price first energy-price-list

 set energy-price-list but-first energy-price-list

]

 set steps-all-household-total-energy-use 0

 ;; set steps-all-household-electricity-use 0

 ;; set steps-all-household-gas-use 0

 ;; set steps-all-household-coal-use 0

102

 ;; set steps-all-household-oil-use 0

 ;; set steps-all-household-LPG-use 0

 set all-household-capital-reserves 0

 if(length household-transition-matrix-list > 0) [

 set current-household-transition-matrix (first household-transition-matrix-list)

 set household-transition-matrix-list (but-first household-transition-matrix-list)

]

 ;; Get the list of subcategories of appliances introduced in the last

 ;; new-subcategory-steps

 set new-subcategories []

 let new-appliance-subcategories [subcategory] of appliances with

 [first-step-available >= (ticks - new-subcategory-steps)]

 foreach remove-duplicates new-appliance-subcategories [

 if (count (appliances with [(subcategory = ?) and

 (first-step-available < (ticks - new-subcategory-steps))]) = 0) [

 set new-subcategories (fput ? new-subcategories)

]

]

end

;;

;; step

;;

;; Perform one step of the model (for households)

to step

 transition-household-state

 set goal-frame choose-goal-frame ;; Just do this once per step in CEDSS 3

 set usage-mode get-usage-mode

 calculate-moeu ; steply overall energy use

 calculate-finance

 replace-broken-appliances

 ifelse goal-frame = "hedonistic" [

 let hedonic-visited-list update-wish-list

 buy-new-appliances

 foreach hedonic-visited-list [

 visit ?

]

]

 [

 if [tenure] of one-of out-address-neighbors = "owned" [

 buy-insulation

]

 buy-new-appliances

 if count social-link-neighbors > 0 [

 repeat visits-per-step [

 visit one-of social-link-neighbors

]

]

]

 if use-social-links [

 update-links

]

 update-insulation-upgrades

 set all-household-capital-reserves all-household-capital-reserves + capital-reserve

 set steps-all-household-total-energy-use (steps-all-household-total-energy-use

 + steps-total-energy-use)

end

;;

;; replace-broken-appliances

;;

;; households replace their broken appliances using the current goal frame

to replace-broken-appliances

 let broken-appliances []

 ask my-out-ownerships with [broken? = true] [

 set broken-appliances fput other-end broken-appliances

 set land-fill fput other-end land-fill

 die

]

 let my-dwelling one-of out-address-neighbors

 foreach broken-appliances [

 let broken-appliance ?

 ;; Nick 2011-10-18 Amended from this point on to make all essential appliances, not just

heating, landlord-supplied.

 ;; ifelse [category] of broken-appliance = "heating" [

103

 ifelse [essential?] of broken-appliance and one-of (my-out-ownerships with [[category] of

other-end = [category] of broken-appliance]) = nobody [

 let newitem false

 let this-tenure [tenure] of my-dwelling

 ifelse length this-tenure > 6 and substring (reverse this-tenure) 0 6 = "detner" [

 ;; The tenure ends with "rented"

 set newitem hedonistic-ess-replace broken-appliance

 ifelse newitem != false and is-agent? newitem and newitem != nobody [

 ; print (word household-id " replacing broken essential appliance " broken-appliance "

with " newitem)

 add-item-cost-free newitem 0

]

 [

 output-print (word "*** Warning: renting household \"" household-id

 "\" could not replace essential appliance \"" [name] of broken-appliance "\"")

 set breakdown-list (fput broken-appliance breakdown-list)

]

]

 [

 ifelse goal-frame = "hedonistic" [

 set newitem hedonistic-ess-replace broken-appliance

]

 [

 ifelse goal-frame = "gain" [

 ;; Next three lines added

 ifelse [category] of broken-appliance = "heating" [

 set newitem heating-system-cost-advice self broken-appliance

]

 [

 set newitem gain-ess-replace broken-appliance

]

]

 [

 set newitem norm-ess-replace broken-appliance

]

]

 ifelse newitem != false and is-agent? newitem and newitem != nobody [

 ; print (word household-id " replacing broken essential appliance " broken-appliance "

with " newitem)

 add-item newitem 0

]

 [

 output-print (word "*** Warning: household \"" household-id

 "\" could not replace essential appliance \"" [name] of broken-appliance "\"")

 set breakdown-list (fput broken-appliance breakdown-list)

]

]

]

 [

 ;; Nick 2011-1018 Most of remainder of procedure edited out - already covered above.

 ;;ifelse [essential?] of broken-appliance [

 ;; let newitem false

 ;;ifelse (goal-frame = "hedonistic") [

 ;; set newitem hedonistic-ess-replace broken-appliance

 ;;]

 ;;[

 ;; ifelse (goal-frame = "gain") [

 ;; set newitem gain-ess-replace broken-appliance

 ;;]

 ;; [

 ;; set newitem norm-ess-replace broken-appliance

 ;;]

 ;;]

 ;;ifelse newitem != false and is-agent? newitem and newitem != nobody [

 ;; ; print (word household-id " replacing broken essential " broken-appliance " with "

newitem)

 ;; add-item newitem 0

 ;;]

 ;; [

 ;; output-print (word "*** Warning: household \"" household-id

 ;; "\" could not replace essential broken equipment \"" [name] of broken-appliance

"\"")

 ;; set breakdown-list (fput broken-appliance breakdown-list)

 ;;]

 ;;]

 ;;[

 ;; ;; ...otherwise, just bung it on the list of broken equipment

 ;; ; print (word household-id " saving broken non-essential " broken-appliance " for

later")

 set breakdown-list (fput broken-appliance breakdown-list)

]

]

end

104

;;

;; buy-new-appliances

;;

;; Purchase new appliances

to buy-new-appliances

 ifelse (goal-frame = "hedonistic") [

 hedonistic-equip

]

 [

 ifelse (goal-frame = "gain") [

 gain-equip

]

 [

 norm-equip

]

]

end

;;

;; buy-insulation

;;

;; Buy insulation (norm and gain mode only)

to buy-insulation

 ifelse goal-frame = "gain" [

 gain-insulation

]

 [

 norm-insulation

]

end

;;

;; update-wish-list

;;

;; Update the wish list for appliances and return the list of neighbours visited

to-report update-wish-list

 ;; choose one random item with a subcategory introduced in the last

 ;; new-subcategory-steps

;; Next 3 lines replaced to allow number of new-subcategory items added to wish-list to be set

;; by a global variable given as an input parameter, new-subcategory-appliances-per-step.

;; let new-appliances appliances with [member? subcategory new-subcategories and not (category =

"heating")]

;; if count new-appliances > 0 [

;; set wish-list fput (one-of new-appliances) wish-list

;;]

 let new-subcategory-appliances-to-choose new-subcategory-appliances-per-step

 let new-appliance-list sort appliances with [member? subcategory new-subcategories and not

(category = "heating")]

 while [length new-appliance-list > 0 and new-subcategory-appliances-to-choose > 0] [

 set wish-list fput (first new-appliance-list) wish-list

 set new-subcategory-appliances-to-choose new-subcategory-appliances-to-choose - 1

 set new-appliance-list but-first new-appliance-list

]

 ;; choose one random item from visits-per-step social links

 let hedonic-visited-list []

 if count social-link-neighbors > 0 [

 let link-items []

 repeat visits-per-step [

 let visited one-of social-link-neighbors

 let unowned-appliances ((appliances-i-dont-have-owned-by visited) with [not (category =

"heating")])

 if count unowned-appliances > 0 [

 set link-items (sentence link-items (sort unowned-appliances))

 ;; Doesn't matter if an appliance occurs more than once in the list

 ;; (Note that 'sort' is used to convert an agent-list into a list)

]

 set hedonic-visited-list fput visited hedonic-visited-list

]

 if length link-items > 0 [

 set wish-list fput (one-of link-items) wish-list

]

]

 ;; choose one random replacement for an appliance already owned that is more

 ;; than old-product-steps old

 ;; Nick 2011-10-18 Changed next line so that no essential item will be selected for replacement.

This is necessary

 ;; for consistent treatment of essential items when the tenure is "rented".

105

 ;; let an-old-ownership one-of (my-out-ownerships with [age >= old-product-steps and not

([category] of other-end = "heating")])

 let an-old-ownership one-of (my-out-ownerships with [age >= old-product-steps and not

([essential?] of other-end)])

 if(an-old-ownership != nobody) [

 set wish-list fput (one-of (current-replacements-for [other-end] of

 an-old-ownership))

 wish-list

]

 report hedonic-visited-list

end

;;

;; update-insulation-upgrades

;;

;; use the information loaded from the insulation upgrade file to update the

;; insulation upgrades available

to update-insulation-upgrades

 let next-update false

 if length insulation-updates > 0 [

 set next-update first insulation-updates

]

 while [next-update != false] [

 ifelse table:get next-update "step" = ticks + 1 [

 update-insulation next-update

 set insulation-updates but-first insulation-updates

 set next-update first insulation-updates

]

 [

 set next-update false

]

]

end

;;

;; update-insulation

;;

;; Implement an insulation update command

to update-insulation [cmd]

 let command table:get cmd "command"

 let dw-type table:get cmd "dwelling-type"

 let from-state insulations with [insulation-state = table:get cmd "from-state" and insulation-

dwelling-type = dw-type]

 let to-state insulations with [insulation-state = table:get cmd "to-state" and insulation-

dwelling-type = dw-type]

 let the-cost read-from-string table:get cmd "cost"

 if count from-state != 1 [

 output-print (word "*** Error in insulation update file " insulation-update-file

 ": not 1 insulation for state " (table:get cmd "from-state")

 " and dwelling type " dw-type)

]

 if count to-state != 1 [

 output-print (word "*** Error in insulation update file " insulation-update-file

 ": not 1 insulation for state " (table:get cmd "to-state")

 " and dwelling type " dw-type)

]

 ifelse command = "remove" [

 ask from-state [

 ask out-upgrade-to one-of to-state [

 die

]

]

]

 [

 ifelse command = "add" [

 ask from-state [

 create-upgrades-to to-state [

 set upgrade-cost the-cost

 set hidden? true

]

]

]

 [

 ifelse command = "change" [

 ask from-state [

 ask out-upgrade-to one-of to-state [

 set upgrade-cost the-cost

]

106

]

]

 [

 output-print (word "*** Warning: Ignoring unrecognised insulation "

 "upgrade update command \"" command "\"")

]

]

]

end

;;

;; get-usage-mode

;;

;; Return the usage mode for a household

to-report get-usage-mode

 let mode []

 let mode-boolean table:make

 let frame-table table:get usage-mode-matrix goal-frame

 foreach (table:keys frame-table) [

 let condition-str table:get frame-table ?

 let condition-not false

 let condition-words split " " condition-str

 if first condition-words = "not" [

 set condition-not true

 set condition-words but-first condition-words

]

 let condition first condition-words

 if condition = "negative-capital-reserve" [

 ifelse negative-capital-reserve [

 add-mode mode-boolean ? condition-not

]

 [

 add-mode mode-boolean ? (not condition-not)

]

]

 if condition = "true" [

 add-mode mode-boolean ? condition-not

]

 if condition = "false" [

 add-mode mode-boolean ? (not condition-not)

]

 ;; Add new rules here

]

 foreach (table:keys mode-boolean) [

 if table:get mode-boolean ? = true [

 set mode fput ? mode

]

]

 if length mode > 1 [

 output-print (word "*** Error: ambiguous usage mode for agent with goal-frame \""

 goal-frame "\": " mode)

]

 if length mode = 0 [

 output-print (word "*** Error: no usage mode for agent with goal-frame \"" goal-frame "\"")

]

 report one-of mode

end

;;

;; add-mode

;;

;; Add a mode to the mode boolean table

to add-mode [mode-table mode boolean]

 if table:has-key? mode-table mode [

 if not (table:get mode-table mode = boolean) [

 output-print (word "*** Error: conflict for usage-mode \"" mode "\" in agent with "

 "goal frame \"" goal-frame "\"")

]

]

 table:put mode-table mode boolean

end

;;

;; transition-household-state

;;

;; Use the current household transition matrix to determine the change in state

107

;; of the household

to transition-household-state

 let transition-probabilities (table:get

 current-household-transition-matrix household-type)

 let p-sum 0

 let p-value random-float 1

 let changed false

 ;; not really "changed" if it happens to select the same new state

 foreach (shuffle table:keys transition-probabilities) [

 let p table:get transition-probabilities ?

 let migrant false

 set p-sum p-sum + p

 if (not changed) and (p-value < p-sum) [

 ifelse ? = "in-migrant" [

 set household-type one-of household-types-list

 resample-parameters

]

 [

 set household-type ?

]

 set changed true

]

]

end

;;

;; resample-parameters

;;

;; A household resamples its parameters to simulate another household migrating

;; in

to resample-parameters

 let my-dwelling one-of out-address-neighbors

 let hh-type [household-type] of self

 let dw-type [dwelling-type] of my-dwelling

 let t-type [tenure] of my-dwelling

 let dwt-type (word t-type ":" dw-type)

 let resampled? false

 if household-id != "new" and table:has-key? named-in-migrants household-id [

 let hh-table table:get named-in-migrants household-id

 if table:has-key? hh-table dwt-type [

 let hh-list table:get hh-table dwt-type

 if length hh-list > 0 [

 let param-table first hh-list

 set hh-list but-first hh-list

 set household-id table:get param-table "id"

 set steply-net-income read-from-string (table:get param-table "income")

 set first-step-available ticks

 set capital-reserve read-from-string (table:get param-table "capital")

 set hedonism read-from-string (table:get param-table "hedonism")

 set gain-orientation read-from-string (table:get param-table "gain")

 set greenness read-from-string (table:get param-table "norm")

 set frame-adjustment read-from-string (table:get param-table "frame")

 set planning-horizon read-from-string (table:get param-table "planning")

 set resampled? true

]

 ifelse length hh-list > 0 [

 table:put hh-table dwt-type hh-list

]

 [

 table:remove hh-table dwt-type

]

]

 if table:length hh-table = 0 [

 table:remove named-in-migrants hh-type

]

]

 if not resampled? [

 if table:has-key? in-migrant-types hh-type [

 let hh-table table:get in-migrant-types hh-type

 if table:has-key? hh-table dwt-type [

 let param-table table:get hh-table dwt-type

 set next-id next-id + 1

 set household-id (word "household-" next-id)

;; Next line changed to read a list of values, not a distribution.

 set steply-net-income read-from-string (table:get param-table "income")

 set first-step-available ticks

 set capital-reserve sample (table:get param-table "capital")

;; The line below has two occurrences of "sample".

;; It should not have made any difference. Removed.

;; set hedonism sample sample (table:get param-table "hedonism")

 set hedonism sample (table:get param-table "hedonism")

 set gain-orientation sample (table:get param-table "gain")

 set greenness sample (table:get param-table "norm")

108

 set frame-adjustment sample (table:get param-table "frame")

 set planning-horizon sample (table:get param-table "planning")

 set resampled? true

]

]

]

 ifelse resampled? [

 if use-social-links [

 ask my-social-links [

 die

]

 ;; need to resample social links...

 ifelse table:has-key? in-migrant-links household-id [

 make-social-links (table:get in-migrant-links name)

 table:remove in-migrant-links name

]

 [

 make-random-social-links

]

]

 ;; Reallocate appliances

 ask my-out-ownerships [

 die

]

 allocate-initial-appliances

 set wish-list []

]

 [

 output-print (word "*** Error: unable to resample parameters for household type "

 hh-type " and dwelling/tenure type " dwt-type)

]

end

;;

;; calculate-moeu

;;

;; Calculate the steply overall energy use of a household. This procedure now

;; also deducts the price of that energy. Amended 2011-09-28 to deal with insulation.

to calculate-moeu

 let moeu 0 ;; this is now in kWh

 let ecost 0

 let hh-type household-type

 let dw-type [dwelling-type] of one-of out-address-neighbors

 let t-type [tenure] of one-of out-address-neighbors

 let umode usage-mode

 let my-insulation [insulation-factor] of one-of out-address-neighbors

 if count out-ownership-neighbors = 0 [

 output-print (word "*** Error: household \"" household-id "\" has no appliances ")

]

 ask out-ownership-neighbors [

 let consumptions out-consume-neighbors with [for-household-type = hh-type

 and for-dwelling-type = dw-type

 and for-tenure-type = t-type

 and in-usage-mode = umode

 and in-step = (ticks mod steps-per-year) + 1]

 if count consumptions = 0 [

 output-print (word "*** Error: appliance \"" name

 "\" doesn't use any consumption pattern for household type \"" hh-type

 "\", dwelling type \"" dw-type "\", tenure type \"" t-type

 "\", usage mode \"" umode "\" and step " ((ticks mod steps-per-year) + 1))

]

 ask consumptions [

 ;; for each fuel used by the appliance for any purpose this step

 let cons-ins-factor 1

 if for-purpose = "space-heating" [

 set cons-ins-factor my-insulation

]

 ask my-out-uses [

 let the-fuel other-end

 let energy-use (units-per-use * cons-ins-factor * [kWh-per-unit] of the-fuel)

 ask the-fuel [

 set total-kWh total-kWh + energy-use

]

 set moeu moeu + energy-use

 set ecost ecost + (units-per-use * table:get energy-price [fuel-type] of the-fuel)

]

]

]

109

 set steps-total-energy-use moeu

 set capital-reserve capital-reserve - ecost

end

;;

;; calculate-current-running-cost

;;

;; An appliance reports its running cost (for fuel use) based on current prices

to-report calculate-current-running-cost [hh a-step]

 let hh-type [household-type] of hh

 let hh-dwelling one-of ([out-address-neighbors] of hh)

 let dw-type [dwelling-type] of hh-dwelling

 let t-type [tenure] of hh-dwelling

 let umode [usage-mode] of hh

 let dw-ins-factor [insulation-factor] of hh-dwelling

 let consumptions out-consume-neighbors with [for-household-type = hh-type

 and for-dwelling-type = dw-type

 and for-tenure-type = t-type

 and in-usage-mode = umode

 and in-step = (a-step mod steps-per-year) + 1]

 if count consumptions = 0 [

 output-print (word "*** Error: appliance \"" name

 "\" doesn't use any consumption pattern for household type \"" hh-type

 "\", dwelling type \"" dw-type "\", tenure type \"" t-type

 "\", usage mode \"" umode "\" and step " ((a-step mod steps-per-year) + 1))

]

 let total-cost 0

 ask consumptions [

 ;; for each fuel used by the appliance for any purpose this step

 let cons-ins-factor 1

 if for-purpose = "space-heating" [

 set cons-ins-factor dw-ins-factor

]

 ask my-out-uses [

 let the-fuel other-end

 set total-cost total-cost + (units-per-use * cons-ins-factor * table:get energy-price [fuel-

type] of the-fuel)

]

]

 report total-cost

end

;;

;; calculate-projected-running-cost

;;

;; Calculate a running cost over a household's planning horizon, assuming

;; current energy prices

to-report calculate-projected-running-cost [hh]

 let hh-horizon [planning-horizon] of hh

 let total-cost 0

 let a-step ticks

 repeat hh-horizon [

 set a-step a-step + 1

 set total-cost total-cost + calculate-current-running-cost hh a-step

]

 report total-cost

end

;;

;; calculate-finance

;;

;; Calculate the household's finance

to calculate-finance

;; Amended to allow for use of income time-series.

 set capital-reserve (capital-reserve + income-this-step)

end

;;

;; calculate-breakdowns

;;

;; Calculate the breakdowns of pieces of equipment

to calculate-breakdowns

 ask households [

110

 ask my-out-ownerships [

 if random-float 1 < [breakdown-probability] of other-end [

 set broken? true

]

]

]

end

;;

;; choose-goal-frame

;;

;; Choose a goal frame

to-report choose-goal-frame

 let goal-frame-parameter-total hedonism + gain-orientation + greenness

 let selection random-float goal-frame-parameter-total

 ifelse (selection < hedonism) [

 set hedonism hedonism + habit-adjustment-factor

 ifelse hedonism > goal-frame-parameter-total [

 set hedonism goal-frame-parameter-total

 set gain-orientation 0

 set greenness 0

]

 [

 set gain-orientation gain-orientation - (habit-adjustment-factor / 2)

 set greenness greenness - (habit-adjustment-factor / 2)

 ifelse gain-orientation < 0 [

 set greenness goal-frame-parameter-total - hedonism

 set gain-orientation 0

]

 [

 if greenness < 0 [

 set gain-orientation goal-frame-parameter-total - hedonism

 set greenness 0

]

]

]

 report "hedonistic"

]

 [

 ifelse (selection < hedonism + gain-orientation) [

 set gain-orientation gain-orientation + habit-adjustment-factor

 ifelse gain-orientation > goal-frame-parameter-total [

 set gain-orientation goal-frame-parameter-total

 set hedonism 0

 set greenness 0

]

 [

 set hedonism hedonism - (habit-adjustment-factor / 2)

 set greenness greenness - (habit-adjustment-factor / 2)

 ifelse hedonism < 0 [

 set greenness goal-frame-parameter-total - gain-orientation

 set hedonism 0

]

 [

 if greenness < 0 [

 set hedonism goal-frame-parameter-total - gain-orientation

 set greenness 0

]

]

]

 report "gain"

]

 [

 set greenness greenness + habit-adjustment-factor

 ifelse greenness > goal-frame-parameter-total [

 set greenness goal-frame-parameter-total

 set hedonism 0

 set gain-orientation 0

]

 [

 set hedonism hedonism - (habit-adjustment-factor / 2)

 set gain-orientation gain-orientation - (habit-adjustment-factor / 2)

 ifelse hedonism < 0 [

 set gain-orientation goal-frame-parameter-total - greenness

 set hedonism 0

]

 [

 if gain-orientation < 0 [

 set hedonism goal-frame-parameter-total - greenness

 set gain-orientation 0

]

]

]

 report "norm"

]

]

end

111

;;

;; insulation-factor

;;

;; Return the insulation factor of a dwelling

to-report insulation-factor

 let factor 1.0

 ask in-insulate-neighbors [

 set factor factor * fuel-use-factor

]

 report factor

end

;;

;; current-replacements-for

;;

;; Report an agent-set of the appliances that can replace the argument

to-report current-replacements-for [an-appliance]

 report current-appliances with [self = an-appliance

 or my-member? self ([out-replacement-neighbors] of an-appliance)]

end

;;

;; appliances-i-can-afford

;;

;; Report an agent-set of the appliances that a household can afford to buy.

;; Note that this includes appliances that may no longer or not yet be

;; available.

;;to-report appliances-i-can-afford

;; let budget capital-reserve + steply-net-income * credit-multiple-limit

;; report appliances with [cost <= budget]

;;end

to-report appliances-i-can-afford

;; Amended to allow use of income time-series

 let budget capital-reserve + income-this-step * credit-multiple-limit

 report appliances with [cost-this-step <= budget]

end

;;

;; appliances-household-can-afford

;;

;; Report an agent-set of the appliances the household-agent can afford to buy.

;; Note that this includes appliances that may no longer or not yet be

;; available.

to-report appliances-household-can-afford [household-agent]

 report [appliances-i-can-afford] of household-agent

end

;;

;; cost-this-step

;;

to-report cost-this-step

 let indexa ticks - first-step-available

 if (first-step-available = -1) [

 set indexa (indexa - 1)

]

 ;; Note that if the item is not yet available or no longer available, or if the cost-list has

fewer items

 ;; than the number of ticks for which it is available, the last element of the cost-list will be

returned.

 if (indexa < 0) or (length cost-list - 1 < indexa) [

 set indexa (length cost-list - 1)

]

 report item indexa cost-list

end

;;

;; income-this-step

;;

to-report income-this-step

 let indexa ticks - first-step-available

 if (indexa < 0) or (length steply-net-income - 1 < indexa) [

 set indexa (length steply-net-income - 1)

]

 report item indexa steply-net-income

end

;;

112

;; current-appliances-i-can-afford

;;

;; Report an agent-set of the currently available appliances that a household

;; can afford to buy.

to-report current-appliances-i-can-afford

 report (appliances-household-can-afford self)

 with [first-step-available <= ticks and (last-step-available-unbounded? or last-step-available

>= ticks)]

end

;;

;; appliances-to-be-replaced

;;

;; Report an agent-set of appliances that are in the household's breakdown list

to-report appliances-to-be-replaced

 report appliances with [my-member? self ([breakdown-list] of myself)]

end

;;

;; current-replacements-for-appliances-to-be-replaced

;;

;; Use the methods above to return an agent-set of appliances that the household

;; passed as argument has to replace

to-report current-replacements-for-appliances-to-be-replaced [household-agent]

 let breakdown-set appliances with [my-member? self ([breakdown-list]

 of household-agent)]

 report current-appliances with

 [my-member? self ([out-replacement-neighbors] of breakdown-set)

 or my-member? self breakdown-set]

end

;;

;; current-replacements-for-my-appliances

;;

;; Report an agent set of current replacements for the appliances of a household

to-report current-replacements-for-my-appliances

 report (current-appliances with

 [my-member? self ([out-replacement-neighbors] of out-ownership-neighbors)

 or my-member? self out-ownership-neighbors])

end

;;

;; appliances-i-dont-have-owned-by

;;

;; Report an agent set of appliances not owned by the household that another

;; household they visited does have

to-report appliances-i-dont-have-owned-by [some-one-i-visited]

 report ([out-ownership-neighbors] of some-one-i-visited) with

 [not my-member? self ([out-ownership-neighbors] of myself)]

end

;;

;; current-replacements-for-appliances-i-dont-have-owned-by

;;

;; Report an agent set of current replacements for appliances not owned by

;; the household that another household they visited does have

to-report current-replacements-for-appliances-i-dont-have-owned-by

 [some-one-i-visited]

 let joneses-appliances appliances-i-dont-have-owned-by some-one-i-visited

 report current-appliances with

 [my-member? self ([out-replacement-neighbors] of joneses-appliances)

 or my-member? self joneses-appliances]

end

;;

;; visit

;;

;; Visit another household; this essentially involves goal-frame adjustment

to visit [some-one]

 ask social-link-with some-one [

 set n-visits n-visits + 1

]

 ;; adjust values in the direction of those of the contact

 value-adjust some-one

 if (reciprocal-adjustment = true) [

 ;; adjust contact's values reciprocally

 ask some-one [value-adjust self]

]

end

113

;;

;; hedonistic-ess-replace

;;

;; Replace a piece of essential equipment in hedonistic mode. If acting

;; hedonistically, household minimises the capital cost of replacing an

;; essential item (so as to maximise what is available for hedonistic spending)

;;to-report hedonistic-ess-replace [an-appliance]

;; report one-of ((current-replacements-for an-appliance) with-min [cost])

;;end

to-report hedonistic-ess-replace [an-appliance]

 report one-of ((current-replacements-for an-appliance) with-min [cost-this-step])

end

;;

;; heating-system-cost-advice

;;

;; Procedure representing the provision of advice to a household as to the

;; lowest financial cost option for replacing an appliance, based on its

;; expected energy use over the household's planning horizon.

to-report heating-system-cost-advice [hh an-appliance]

 let hh-horizon [planning-horizon] of hh

 let app-replacements current-replacements-for an-appliance

 if count app-replacements = 0 [

 report false

]

 let best-cost -1

 let best-app false

 ask app-replacements [

 ;; let this-cost cost + calculate-projected-running-cost hh

 let this-cost cost-this-step + calculate-projected-running-cost hh

 ifelse best-cost = -1 [

 set best-app self

 set best-cost this-cost

]

 [

 if this-cost < best-cost [

 set best-app self

 set best-cost this-cost

]

]

]

 report best-app

end

;;

;; gain-ess-replace

;;

;; Replace a piece of essential equipment in gain mode. This is based on cost

;; and running cost.

to-report gain-ess-replace [an-appliance]

 report one-of (current-replacements-for an-appliance)

end

;;

;; norm-ess-replace

;;

;; Replace a piece of essential equipment in norm mode. This is based on

;; embodied and running energy cost.

to-report norm-ess-replace [an-appliance]

 report one-of ((current-replacements-for an-appliance) with-min [norm-cost])

end

;;

;; gain-cost

;;

;; Report the gain cost of an appliance. This is just its purchase price

;;to-report gain-cost

;; report cost

;;end

to-report gain-cost

 report cost-this-step

end

114

;;

;; norm-cost

;;

;; Report the norm cost of an appliance. This is inversely proportional to

;; its energy rating

to-report norm-cost

 ifelse energy-rating-provided? [

 ;; Changed to correspond with carbon calculator used in survey

 ;; report 1 / energy-rating

 report energy-rating

]

 [

 report breakdown-probability

]

end

;;

;; hedonistic-equip

;;

;; Purchase new appliances in hedonistic mode

to hedonistic-equip

 let choice-list []

 foreach (sentence wish-list breakdown-list) [

 set choice-list (sentence choice-list (sort current-replacements-for ?))

]

 set choice-list remove-duplicates choice-list

 ;; sort in *ascending* order of hedonic score...

 set choice-list sort-by [

 ([hedonic-score] of ?1) < ([hedonic-score] of ?2)

] choice-list

 let affordable-choice-list []

 foreach choice-list [

 ;; Next line amended to take account of both costs and incomes being time-series..

 ;; if [cost] of ? < capital-reserve + (steply-net-income * credit-multiple-limit) [

 if [cost-this-step] of ? < capital-reserve + (income-this-step * credit-multiple-limit) [

 ;; ... because this will reverse the order

 set affordable-choice-list fput ? affordable-choice-list

]

]

 ;; Buy as many affordable things as possible

 ;; but not more than one from a category.

 while [(length affordable-choice-list > 0) and

 ;; (capital-reserve - ([cost] of first choice-list)

 (capital-reserve - ([cost-this-step] of first choice-list)

 ;; Next line amended to allow for time series of incomes.

 > (income-this-step * (- credit-multiple-limit)))] [

 let new-item first choice-list

 add-item new-item 0

 ;; update the list of affordable things

 let new-choice-list []

 foreach but-first affordable-choice-list [

 if [category] of ? != [category] of new-item [

 set new-choice-list fput ? new-choice-list

]

]

 set affordable-choice-list new-choice-list

]

end

;;

;; gain-equip

;;

;; Purchase new equipment in gain mode

to gain-equip

 let choice-set current-replacements-for-appliances-to-be-replaced self

 add-item (one-of choice-set with-min [gain-cost]) 0

end

;;

;; norm-equip

;;

;; Purchase a new piece of equipment in norm mode

to norm-equip

 let choice-set current-replacements-for-appliances-to-be-replaced self

 add-item (one-of choice-set with-min [norm-cost]) 0

end

115

;;

;; gain-insulation

;;

;; Add insulation in gain mode

;;

to gain-insulation

 ;; Choose the insulation state reachable from the current state that will save

 ;; the most money and make a positive monetary saving over the planning horizon.

 ;; Nick

 let dw one-of out-address-neighbors

 let current-insulations false

 ask dw [

 set current-insulations in-insulate-neighbors

]

 let old-insulation nobody

 let new-insulation nobody

 let saving 0

 let candidate-state false

 let candidate-cost 0

 let candidate-saving 0

 let current-fuel-use-factor [insulation-factor] of dw

 let candidate-fuel-use-factor 1

 let cost-of-upgrade 0

 let current-projected-space-heating-cost calculate-projected-space-heating-cost-over-planning-

horizon self

 ask current-insulations [

 let replaced-fuel-use-factor fuel-use-factor

 set old-insulation self

 ask my-out-upgrades [

 set candidate-cost upgrade-cost

 ask other-end [

 set candidate-fuel-use-factor current-fuel-use-factor * fuel-use-factor / replaced-fuel-

use-factor

 ;; The above assumes that fuel-use-factors act as a product (check for consistency with

insulation-factor)

 set candidate-state insulation-state

 set candidate-saving (current-projected-space-heating-cost * (1 - candidate-fuel-use-

factor / current-fuel-use-factor) - candidate-cost)

 if (candidate-saving > saving) [

 set saving candidate-saving

 set new-insulation self

 set cost-of-upgrade candidate-cost

]

]

]

]

 add-insulation dw old-insulation new-insulation cost-of-upgrade

end

;;

;; norm-insulation

;;

;; Add insulation in norm mode

to norm-insulation

 ;; Choose the insulation state reachable from the current state that will

 ;; leave a positive capital-reserve and save the most energy

 ;; Nick

 let dw one-of out-address-neighbors

 let c-r capital-reserve

 let current-insulations false

 ask dw [

 set current-insulations in-insulate-neighbors

]

 let old-insulation nobody

 let new-insulation nobody

 let candidate-insulation false

 let saving 0

 let candidate-state false

 let candidate-cost 0

 let cost-of-upgrade 0

 let energy-saving-ratio 1

 let candidate-energy-saving-ratio 1

 ask current-insulations [

 let replaced-fuel-use-factor fuel-use-factor

 set old-insulation self

 ask my-out-upgrades with [upgrade-cost <= c-r] [

 set candidate-cost upgrade-cost

 ask other-end [

 set candidate-energy-saving-ratio fuel-use-factor / replaced-fuel-use-factor

 if (candidate-energy-saving-ratio < energy-saving-ratio) [

 set energy-saving-ratio candidate-energy-saving-ratio

 set new-insulation self

 set cost-of-upgrade candidate-cost

]

116

]

]

]

 add-insulation dw old-insulation new-insulation cost-of-upgrade

end

;;

;; calculate-projected-space-heating-cost-over-planning-horizon

;;

;; Calculates the projected cost of space heating for a dwelling

;; over the houseg=hold's planning horizon

;; Nick

to-report calculate-projected-space-heating-cost-over-planning-horizon [hh]

 let hh-horizon [planning-horizon] of hh

 let total-cost 0

 let a-step ticks

 repeat hh-horizon [

 set a-step a-step + 1

 set total-cost total-cost + calculate-current-space-heating-cost hh a-step

]

 report total-cost * [insulation-factor] of (one-of [out-address-neighbors] of hh)

end

;;

;; calculate-current-space-heating-cost

;;

;; Calculates the actual or projected cost of space heating of a dwelling

;; for a specific month, assuming current heating costs.

;; Nick

to-report calculate-current-space-heating-cost [hh a-step]

 let hh-type [household-type] of hh

 let hh-dwelling one-of ([out-address-neighbors] of hh)

 let dw-type [dwelling-type] of hh-dwelling

 let t-type [tenure] of hh-dwelling

 let umode [usage-mode] of hh

 let hs one-of out-ownership-neighbors with [category = "heating"]

 let current-cost 0

 ask hs [

 let consumption one-of out-consume-neighbors with [for-household-type = hh-type

 and for-dwelling-type = dw-type

 and for-tenure-type = t-type

 and for-purpose = "space-heating"

 and in-usage-mode = umode

 and in-step = (a-step mod steps-per-year) + 1]

 if consumption = nobody [

 output-print (word "*** Error: appliance \"" name

 "\" doesn't use any consumption pattern for household type \"" hh-type

 "\", dwelling type \"" dw-type "\", tenure type \"" t-type

 "\", usage mode \"" umode "\" and step " ((a-step mod steps-per-year) + 1))

]

 ask consumption [

 ask my-out-uses [

 let the-fuel other-end

 set current-cost units-per-use * table:get energy-price [fuel-type] of the-fuel

]

]

]

 report current-cost

end

;;

;; add-insulation

;;

;; Add insulation to a dwelling

to add-insulation [dw old-insulation new-insulation cost-of-upgrade]

 if new-insulation != nobody [

 add-insulation-cost-free dw old-insulation new-insulation

 set capital-reserve (capital-reserve - cost-of-upgrade)

]

end

;;

;; add-insulation-cost-free

;;

;; Add insulation to a dwelling cost-free

;; Currently, landlords do not insulate, so this will always be called from add-insulation

to add-insulation-cost-free [dw old-insulation new-insulation]

 if (new-insulation != nobody) [

117

 ask dw [

 ask my-in-insulates with [other-end = old-insulation] [

 die

]

 create-insulate-from new-insulation [

 set hidden? true

]

]

]

end

;;

;; add-item

;;

;; Add a piece of equipment to a household

to add-item [new-item vintage]

 if (new-item != nobody) [

 add-item-cost-free new-item vintage

;; set capital-reserve (capital-reserve - [cost] of new-item)

 set capital-reserve (capital-reserve - [cost-this-step] of new-item)

]

end

;;

;; add-item-cost-free

;;

;; Add a piece of equipment to a household, without a charge

to add-item-cost-free [new-item vintage]

 if(new-item != nobody) [

;; Next line replaced 20111014 to allow households to retain multiple items with the same

function.

;; Numbers of items held by a household in any category is limited by the maximum-in-category-

table.

;; ask (my-out-ownerships with [my-member? other-end [in-replacement-neighbors] of new-item]) [

 let category1 [category] of new-item

 let hh-type [household-type] of self

 if (table:has-key? maximum-in-category-table hh-type) [

 let hh-type-table table:get maximum-in-category-table hh-type

 if (table:has-key? hh-type-table category1) [

 let category1-ownership-list []

 ask (my-out-ownerships with [[category] of other-end = category1]) [

 set category1-ownership-list fput self category1-ownership-list

]

 ;; Use of read-from-string below is a kludge: read-table2 reads the category limits in as

 ;; strings instead of integers.

 ;; if (length category1-ownership-list + 1 > read-from-string (table:get hh-type-table

category1)) [

 ;; Since maximum-in-category-table is the only one read in using read-table2, and list-to-

table

 ;; is only used by read-table2, the read-from-string has been put there. (GP)

 if (length category1-ownership-list + 1 > table:get hh-type-table category1) [

 ;; output-print (word "category1-ownership list: " category1-ownership-list)

 let sorted-list sort-by [[age] of ?1 > [age] of ?2] category1-ownership-list

 ;; Could alternatively remove the excess number of items - in practice, this

 ;; should make no difference, I think.

 ask first sorted-list [

 set land-fill fput other-end land-fill

 die

]

]

]

]

 create-ownership-to new-item [

 set hidden? true

 set broken? false

 set age vintage

]

 let updated-breakdown-list []

 foreach breakdown-list [

 if(? != new-item and not (my-member? ? [in-replacement-neighbors] of new-item)) [

 set updated-breakdown-list fput ? updated-breakdown-list

]

]

 set breakdown-list updated-breakdown-list

 let updated-wish-list []

 foreach wish-list [

 if(? != new-item and not (my-member? ? [in-replacement-neighbors] of new-item)) [

 set updated-wish-list fput ? updated-wish-list

]

]

118

 set wish-list updated-wish-list

 set steps-total-energy-use (steps-total-energy-use + [embodied-energy] of new-item)

]

end

;;

;; update-links

;;

;; Update the social links of a household

to update-links

 ifelse (random 2 = 1) [

 lose-link

]

 [

 if (count social-link-neighbors <= max-links) [

 gain-link

]

]

end

;;

;; lose-link

;;

;; A household drops a social link

to lose-link

 if (count social-link-neighbors > 0) [

 let weak-contacts (social-link-neighbors with-min

 [appliance-similarity out-ownership-neighbors [out-ownership-neighbors] of myself])

 set weak-contacts (weak-contacts with-max [block-distance [pxcor] of patch-here

 [pycor] of patch-here])

 let lose-contact one-of (weak-contacts with-min [[n-visits] of social-link-with myself])

 let link-to-lose (social-link-with lose-contact)

 ask link-to-lose [die]

]

end

;;

;; block-distance

;;

;; Report the block distance from the household to the *patch* co-ordinates

;; supplied as argument (bearing in mind that now multiple households can occupy

;; a patch, with randomly assigned coordinates.

to-report block-distance [x y]

 report (abs ([pxcor] of patch-here - x) + abs ([pycor] of patch-here - y))

end

;;

;; gain-link

;;

;; Let a household gain a social link

to gain-link

 let strong-contacts (social-link-neighbors with-max

 [appliance-similarity out-ownership-neighbors [out-ownership-neighbors]

 of myself])

 ifelse (count strong-contacts > 0) [

 let intermediate (one-of strong-contacts)

 let poss-new-contacts shuffle (sort (other ([link-neighbors]

 of intermediate)))

 let poss-new-contacts2 []

 foreach poss-new-contacts [

 if (member? ? social-link-neighbors = false) [

 set poss-new-contacts2 (fput ? poss-new-contacts2)

]

]

 if (poss-new-contacts2 != []) [

 create-social-link-with (one-of poss-new-contacts2) [

 set n-visits 0

]

]

]

 [

 create-social-link-with (one-of (other households)) [

 set n-visits 0

]

]

end

;;

119

;; value-adjust

;;

;; Adjust the goal frames of the household

to value-adjust [contact]

 set hedonism hedonism + (frame-adjustment * ([hedonism] of contact - hedonism))

 set gain-orientation gain-orientation + (frame-adjustment

 * ([gain-orientation] of contact - gain-orientation))

 set greenness (frame-adjustment * ([greenness] of contact - greenness))

 set hedonism ifelse-value (hedonism < 0) [0] [hedonism]

 set gain-orientation ifelse-value (gain-orientation < 0) [0] [gain-orientation]

 set greenness ifelse-value (greenness < 0) [0] [greenness]

end

;;

;; appliance-similarity

;;

;; Report a measure of the similarity of two lists of equipment cea and ceb

to-report appliance-similarity [cea ceb]

 let shared appliances with [my-member? self cea and my-member? self ceb]

 let unshared appliances with [(my-member? self cea or my-member? self ceb)

 and not my-member? self shared]

;; report (similarity-sum shared) - (similarity-sum unshared)

 report count (shared) - count (unshared)

end

;;

;; similarity-sum

;;

;; This procedure uses the equipment similarity list to compute the sum of

;; similarities over a list of 3-element lists, each of which is an equipment

;; description such as: ["heating" "condensing-boiler" "condensing-boiler-type1"]

;; This procedure seems to be calculating a measure of the similarity

;; of members of a set of appliances to each other - which is not what I wanted. I have

;; substituted a simple count of number of shared minus number of unshared appliances in

;; appliance-similarity.

;;to-report similarity-sum [appliance-set]

;; let simsum 0

;; ask appliance-set [

;; let app-A self

;; ask appliance-set [

;; if similarity-neighbor? app-A [

;; set simsum simsum + [score] of similarity-with app-A

;;]

;;]

;;]

;; report simsum

;;end

;;

;; intersection

;;

;; Report the intersection of two lists

to-report intersection [list1 list2]

 let outlist []

 foreach list1 [

 if (member? ? list2) [

 set outlist (fput ? outlist)

]

]

 report outlist

end

;;

;; profile-setup

;;

;; Report the time used to set up the simulation

to-report profile-setup

 report profiler:inclusive-time "setup"

end

;;

;; profile-go

;;

;; Report the time used to run the simulation (other than setting up)

120

to-report profile-go

 report profiler:inclusive-time "go"

end

;;

;; mean-links

;;

;; Report the mean number of social links each time step over the course of the

;; simulation

to-report mean-links

 report total-links / ticks

end

;;

;; n-household

;;

;; Report the number of households

to-report n-households

 report count households

end

;;

;; show-changes

;;

;; Provide some graphical visualisation of the status of a household

to show-changes

 if max-energy-display > 0 [

 ask households [

 ifelse capital-reserve < 0 [

 set shape "face sad"

]

 [

 set shape "face happy"

]

 ifelse goal-frame = "hedonistic" [

 set color red

]

 [

 ifelse goal-frame = "gain" [

 set color blue

]

 [

 ifelse goal-frame = "norm" [

 set color green

]

 [

 set color yellow

]

]

]

]

 ;; Following lines altered to allow empty properties to exist.

 ask dwellings [

 ifelse (one-of in-address-neighbors != nobody) [

 let kwh [steps-total-energy-use] of one-of in-address-neighbors

 ifelse kwh >= max-energy-display [

 set color white

]

 [

 let ncol array:length dwelling-temp-colours

 let index int ((kwh * ncol) / max-energy-display)

 set color array:item dwelling-temp-colours index

]

]

 [set color gray

]

]

 ask social-links [

 set color ifelse-value (n-visits > 19) [9.9] [n-visits / 2]

]

]

end

;;

;; ;;

;; CEDSS File I/O ;;

;; ;;

;;

;;

;; read-table

;;

;; Read a table from a CSV file in the format key,value, with one pair per line

121

;; value may be anything netlogo can build from a string.

to-report read-table [table-file]

 let table table:make

 file-open table-file

 while [not file-at-end?] [

 let line file-read-line

 let data (split "," line)

 let key (first data)

 set data (but-first data)

 let value (first data)

 table:put table key value

]

 file-close

 report table

end

;;

;; read-csv

;;

;; Read a CSV file, returning a list of rows, each row as a table of heading row

;; to cell entry

to-report read-csv [csv-file]

 let rows []

 file-open csv-file

 let headings (split "," file-read-line)

 let row 1

 while [not file-at-end?] [

 let line split "," file-read-line

 if length line != length headings [

 output-print (word "*** Error in file " csv-file ": there are "

 length headings " headings, and " length line " entries in row " row)

]

 let row-table table:make

 (foreach headings line [

 table:put row-table ?1 ?2

])

 set rows lput row-table rows

 set row row + 1

]

 file-close

 report rows

end

;;

;; read-matrix

;;

;; Read a simple matrix with row and column headings and string entries. The

;; result returned is a table of tables. Use the row heading to access the

;; table from which the column heading name is used to access the entry. For

;; example:

;;

;; table:get (table:get result-of-this-procedure "row-heading") "column-heading"

to-report read-matrix [csv-file]

 let matrix-table table:make

 file-open csv-file

 let headings array:from-list (split "," file-read-line)

 while [not file-at-end?] [

 let line array:from-list (split "," file-read-line)

 let row-table table:make

 let i 1

 while [i < array:length line] [

 table:put row-table (array:item headings i) (array:item line i)

 set i i + 1

]

 table:put matrix-table (array:item line 0) row-table

]

 file-close

 report matrix-table

end

;;

;; read-numeric-ts-matrix

;;

;; Read in a time series of matrices, each of which has a matching set of row

;; and column headings, with a list of extra columns. See the Information tab

;; (household transition matrix file) for more information. The result is a

;; list of tables of tables.

122

to-report read-numeric-ts-matrix [csv-file extra-cols]

 let table-list []

 file-open csv-file

 let last-step 0

 while [not file-at-end?] [

 let matrix-table table:make

 let headings array:from-list (split "," file-read-line)

 let tstep read-from-string (array:item headings 0)

 if tstep != last-step + 1 [

 output-print (word "*** Error in transition matrix time-series file " csv-file

 ": matrix for step " tstep " is not the next one after " last-step)

]

 set last-step tstep

 let row 1

 while [not file-at-end? and row < array:length headings - length extra-cols] [

 let line array:from-list (split "," file-read-line)

 let row-table table:make

 if (array:item headings row) != (array:item line 0) [

 output-print (word "*** Error in transition matrix time-series file " csv-file

 ": row heading \"" (array:item line 0) "\" does not match column heading \""

 (array:item headings row) "\"")

]

 let i 1

 while [i < array:length line] [

 table:put row-table (array:item headings i) (read-from-string (array:item line i))

 set i i + 1

]

 table:put matrix-table (array:item headings row) row-table

]

 set table-list fput matrix-table table-list

]

 file-close

 ;; output-print (word "table-list: " table-list)

 report table-list

end

;;

;; read-dwellings-file

;;

;; Read in a dwellings file. The patch file and insulation file should have been

;; read first.

to read-dwellings-file [filename]

 if filename != false and filename != "null" and length filename > 0 [

 foreach (read-csv filename) [

 ask dwellings with [dwelling-id = (table:get ? "id")] [

 set dwelling-type table:get ? "type"

 set tenure table:get ? "tenure"

 if table:has-key? ? "shape" [

 set shape table:get ? "shape"

]

 let my-insulation-state insulations with [insulation-state = (table:get ? "insulation")

and insulation-dwelling-type = [dwelling-type] of myself]

 ifelse count my-insulation-state = 1 [

 create-insulates-from my-insulation-state [

 set hidden? true

]

]

 [

 output-print (word "*** Error in dwellings file " filename

 ": no insulations with insulation state \"" (table:get ? "insulation") "\" for

dwelling type \"" ([dwelling-type] of self) "\"")

]

]

]

]

end

;;

;; read-insulation-file

;;

;; Read in the set of insulation states available for this run

to read-insulation-file [filename]

 if filename != false and filename != "null" and length filename > 0 [

 foreach (read-csv filename) [

 create-insulations 1 [

 set insulation-state table:get ? "insulation-state"

 set fuel-use-factor read-from-string table:get ? "fuel-use-factor"

123

 set insulation-dwelling-type table:get ? "dwelling-type"

 set hidden? true

]

]

]

end

;;

;; read-insulation-upgrade-file

;;

;; Read in the insulation upgrade file. This lists the upgrade options available

;; for each dwelling type.

to read-insulation-upgrade-file [filename]

 if filename != false and filename != "null" and length filename > 0 [

 foreach (read-csv filename) [

 let dw-type table:get ? "dwelling-type"

 let from-state insulations with [insulation-state = (table:get ? "from-state")

 and insulation-dwelling-type = dw-type]

 let to-state insulations with [insulation-state = (table:get ? "to-state")

 and insulation-dwelling-type = dw-type]

 if count from-state != 1 [

 output-print (word "*** Error in insulation file " filename

 ": not 1 insulation for state " (table:get ? "from-state")

 " and dwelling type " dw-type)

]

 if count to-state != 1 [

 output-print (word "*** Error in insulation file " filename

 ": not 1 insulation for state " (table:get ? "to-state")

 " and dwelling type " dw-type)

]

 ask from-state [

 create-upgrades-to to-state [

 set upgrade-cost read-from-string table:get ? "cost"

 set hidden? true

]

]

]

]

end

;;

;; read-insulation-update-file

;;

;; Read in a list of insulation updates

to read-insulation-update-file [filename]

 set insulation-updates []

 if filename != false and filename != "null" and length filename > 0 [

 foreach (read-csv filename) [

 set insulation-updates fput ? insulation-updates

]

 set insulation-updates reverse insulation-updates

]

end

;;

;; read-households-file

;;

;; Read in the households file. The dwellings file should have been read first.

to read-households-file [filename]

 if filename != false and filename != "null" and length filename > 0 [

 foreach (read-csv filename) [

 create-households 1 [

 set household-id table:get ? "id"

 set household-type table:get ? "type"

 set steply-net-income read-from-string (table:get ? "income")

;; Next line added to allow income time series.

 set first-step-available 0

 set capital-reserve read-from-string (table:get ? "capital")

 set hedonism read-from-string (table:get ? "hedonism")

 set gain-orientation read-from-string (table:get ? "gain")

 set greenness read-from-string (table:get ? "norm")

 set frame-adjustment read-from-string (table:get ? "frame")

 set planning-horizon read-from-string (table:get ? "planning")

 let dwelling dwellings with [dwelling-id = (table:get ? "dwelling")]

 ifelse count dwelling = 1 [

 create-address-to one-of dwelling [

 set hidden? true

]

]

124

 [

 output-print (word "*** Error in household file " filename

 ": Unexpected number of dwellings with id "

 (table:get ? "dwelling") " (expected 1)")

]

 set-household-nlogo-params

 ;; The following added to allow

 let line-table ?

 let num 1

 while [table:has-key? line-table (word "initial-item " num)] [

 add-item-cost-free (table:get line-table (word "initial-item " num))

 (table:get line-table (word "initial-age " num))

 set num num + 1

]

]

]

]

end

;;

;; read-in-migrant-file

;;

;; Read in the in-migrant households file.

to read-in-migrant-file [filename]

 if filename != false and filename != "null" and length filename > 0 [

 set in-migrant-types table:make

 set named-in-migrants table:make

 foreach (read-csv filename) [

 ifelse table:get ? "id" = "*" [

 if not (table:has-key? in-migrant-types (table:get ? "type")) [

 table:put in-migrant-types (table:get ? "type") table:make

]

 if not member? (table:get ? "type") household-types-list [

 set household-types-list fput (table:get ? "type") household-types-list

]

 table:put (table:get in-migrant-types (table:get ? "type"))

 (table:get ? "dwelling-type") ?

 ;; So, in-migrant-types is HH type -> dwelling type -> parameter table...

]

 [;; it's a named household with specific parameters

 if not (table:has-key? named-in-migrants (table:get ? "type")) [

 table:put named-in-migrants (table:get ? "type") table:make

]

 let hh-table (table:get named-in-migrants (table:get ? "type"))

 if not (table:has-key? hh-table (table:get ? "dwelling")) [

 table:put hh-table (table:get ? "dwelling") []

]

 let hh-list (table:get hh-table (table:get ? "dwelling"))

 table:put hh-table (table:get ? "dwelling-type") (lput ? hh-list)

 ;; ...while named-in-migrants is HH type -> dwelling type -> list of

 ;; parameter tables

]

 if not member? (table:get ? "dwelling-type") dwelling-types-list [

 set dwelling-types-list fput (table:get ? "dwelling-type") dwelling-types-list

]

]

]

end

;;

;; read-social-link-file

;;

;; Read in the social links. This assumes that the household file has already

;; been read

to read-social-link-file [filename]

 if filename != false and filename != "null" and length filename > 0 [

 file-open filename

 while [not file-at-end?] [

 let line (split "," file-read-line)

 let hh households with [name = first line]

 ifelse count hh = 0 [

 table:put in-migrant-links (first line) (but-first line)

]

 [

 ask hh [

 make-social-links but-first line

]

]

]

125

 file-close

]

end

;;

;; read-social-link-matrix-file

;;

;; Read in the social link matrix file. This contains information on how to

;; create links randomly

to read-social-link-matrix-file [filename]

 if filename != false and filename != "null" and length filename > 0 [

 set patch-links table:make

 set link-radii-list []

 set radius-links table:make

 set link-patch-types-list []

 set patch-type-links table:make

 let first-row? true

 foreach (read-csv filename) [

 if first-row? [

 foreach table:keys ? [

 let parse-heading array:from-list (split " " ?)

 if array:item parse-heading 0 = "radius" [

 set link-radii-list (lput

 read-from-string (array:item parse-heading 1) link-radii-list)

]

 if array:item parse-heading 0 = "type" [

 set link-patch-types-list (lput

 (array:item parse-heading 1) link-patch-types-list)

]

]

 set first-row? false

]

 ;; GP The following two if statements (without the wildcard check) used to

 ;; be in the first-row? statement block above. I don't see why the first (non-heading)

 ;; row of the input file should be allowed to add dwelling types, and not the other

 ;; rows.

 if (not ((table:get ? "A-dwelling") = "*") and (not member? (table:get ? "A-dwelling")

dwelling-types-list)) [

 set dwelling-types-list fput (table:get ? "A-dwelling") dwelling-types-list

]

 if (not ((table:get ? "B-dwelling") = "*") and (not member? (table:get ? "B-dwelling")

dwelling-types-list)) [

 set dwelling-types-list fput (table:get ? "B-dwelling") dwelling-types-list

]

 if (not ((table:get ? "A-type") = "*") and (not member? (table:get ? "A-type") household-

types-list)) [

 set household-types-list fput (table:get ? "A-type") household-types-list

]

 if (not ((table:get ? "B-type") = "*") and (not member? (table:get ? "B-type") household-

types-list)) [

 set household-types-list fput (table:get ? "B-type") household-types-list

]

 let A-type (word (table:get ? "A-type") ":" (table:get ? "A-dwelling"))

 let B-type (word (table:get ? "B-type") ":" (table:get ? "B-dwelling"))

 if not table:has-key? patch-links A-type [

 table:put patch-links A-type table:make

 if length link-radii-list > 0 [

 table:put radius-links A-type table:make

]

 if length link-patch-types-list > 0 [

 table:put patch-type-links A-type table:make

]

]

 let A-patch-table table:get patch-links A-type

 let A-radius-table false

 if length link-radii-list > 0 [

 set A-radius-table table:get radius-links A-type

 table:put A-radius-table B-type []

]

 let A-type-table false

 if length link-patch-types-list > 0 [

 set A-type-table table:get patch-type-links A-type

 table:put A-type-table B-type []

]

 ifelse table:has-key? A-patch-table B-type [

 output-print (word "*** Error in social link matrix file " filename ": parameters linking

"

126

 "household:dwelling " A-type " to " B-type " have already been specified")

]

 [

 table:put A-patch-table B-type (table:get ? "p-patch")

 let row ?

 foreach link-radii-list [

 let key (word "radius " ?)

 table:put A-radius-table B-type

 (lput (table:get row key) (table:get A-radius-table B-type))

]

 foreach link-patch-types-list [

 let key (word "type " ?)

 table:put A-type-table B-type

 (lput (table:get row key) (table:get A-type-table B-type))

]

]

]

]

end

;;

;; read-appliances [filename]

;;

;; read in the appliances from the filename

to read-appliances [filename]

 if filename != false and filename != "null" and length filename > 0 [

 foreach (read-csv filename) [

 ;; output-print (word "processing line with name" table:get ? "name")

 ifelse count appliances with [name = table:get ? "name"] > 0 [

 output-print (word "*** Error: more than one appliance with name \""

 (table:get ? "name") "\" in appliances file " filename)

]

 [

 create-appliances 1 [

 set hidden? true

 set name table:get ? "name"

 set category table:get ? "category"

 set subcategory table:get ? "subcategory"

 set essential? read-from-string (table:get ? "essential")

 set hedonic-score read-from-string (table:get ? "hedonic-score")

 ;; set cost read-from-string (table:get ? "cost")

 set cost-list read-from-string (table:get ? "cost-list")

 let energy-rating-str (table:get ? "energy-rating")

 ifelse energy-rating-str = "NA" [

 set energy-rating-provided? false

]

 [

 set energy-rating-provided? true

 set energy-rating read-from-string energy-rating-str

]

 set embodied-energy read-from-string (table:get ? "embodied-energy")

 set breakdown-probability read-from-string

 (table:get ? "breakdown-probability")

 set first-step-available read-from-string

 (table:get ? "first-step-available")

 let last-step-available-str (table:get ? "last-step-available")

 ifelse last-step-available-str = "Inf" [

 set last-step-available-unbounded? true

]

 [

 set last-step-available-unbounded? false

 set last-step-available read-from-string last-step-available-str

]

]

]

]

]

end

;;

;; read-replacements [filename]

;;

;; Read the equipment replacements from the file. This is a CSV file without

;; headings in which the first column is the name of an appliance, and the

;; remaining columns for that row are the names of all the appliances that can

;; replace that appliance. The replacements file must be read after the

;; appliances file

to read-replacements [filename]

 if filename != false and filename != "null" and length filename > 0 [

127

 file-open filename

 while [not file-at-end?] [

 let line split "," file-read-line

 ask appliances with [name = first line] [

;; output-print (word "processing line with name " first line)

 foreach but-first line [

 let other-appliance one-of appliances with [name = ?]

 if other-appliance != self [

;; Preceding line added, following lines commented out for convenience in constructing input

files. Since a check is

;; always made that a possible replacement is available at the current step, it does not matter

;; for the functioning of the program if an item recorded as a possible replacement is not

available

;; any time the item might need replacing; while if self is found in the list of replaciements, it

is now to be ignored.

;; ifelse other-appliance != self [

;; ifelse not ([last-step-available-unbounded?] of other-appliance)

;; and [last-step-available] of other-appliance < first-step-available [

;; output-print (word "*** Error in replacements file " filename ": appliance \""

;; ? "\" cannot act as a replacement for appliance \"" name

;; "\" because its last-step-available (" ([last-step-available] of

;; other-appliance) ") is before " name "'s first-step-available ("

;; first-step-available ")")

;;]

;; [

 create-replacement-to other-appliance [

 set hidden? true

;;]

]

]

;; [

;; output-print (word "*** Error in replacements file " filename ": appliance \""

;; ? "\" is listed as a replacement for itself")

;;]

]

]

]

 file-close

]

end

;;

;; read-energy-suppliers [filename]

;;

;; read in the list of energy suppliers for each fuel type. This will read a

;; list of fuel-type to price tables into the energy-price-list. If there are

;; multiple suppliers for one fuel, the cheapest will be selected. The fuels

;; file must have been read in first.

to read-energy-suppliers [filename]

 set energy-price-list []

 if filename != false and filename != "null" and length filename > 0 [

 file-open filename

 if file-at-end? [

 output-print (word "*** Error: Suppliers file " filename " is empty!")

]

 let dummy file-read-line ;; ignore suppliers

 if file-at-end? [

 output-print (word "*** Error: Suppliers file " filename " has no fuels!")

]

 let fuels-list split "," file-read-line

 ;; Before reading in the data, check the fuels have been defined

 foreach fuels-list [

 if count fuels with [fuel-type = ?] = 0 [

 output-print (word "*** Error: No fuel defined with type \"" ? "\"")

]

]

 ;; Now read in the data

 let fuels-arr array:from-list fuels-list

 while [not file-at-end?] [

 let prices array:from-list split "," file-read-line

 let cheapest-prices table:make

 let i 0

 while [i < array:length fuels-arr] [

 let this-fuel array:item fuels-arr i

 let this-price read-from-string array:item prices i

 ifelse table:has-key? cheapest-prices this-fuel [

 table:put cheapest-prices this-fuel ifelse-value

 (this-price < table:get cheapest-prices this-fuel)

 [this-price] [table:get cheapest-prices this-fuel]

128

]

 [

 table:put cheapest-prices this-fuel this-price

]

 set i i + 1;

]

 set energy-price-list lput cheapest-prices energy-price-list

]

 file-close

]

end

;;

;; read-appliance-similarity [filename]

;;

;; Read the equipment similarity file. This file defines how "similar" different

;; items are, for use in gaining and losing social links. The file can be per

;; category/subcategory or per appliance.

;; Not currently in use

;;to read-appliance-similarity [filename]

;; if filename != false and filename != "null" and length filename > 0 [

;; foreach (read-csv filename) [

;; ifelse table:has-key? ? "category A" [

;; let cat-A table:get ? "category A"

;; let cat-B table:get ? "category B"

;; let sub-A table:get ? "subcategory A"

;; let sub-B table:get ? "subcategory B"

;; let apps-A appliances with [category = cat-A and subcategory = sub-A]

;; let apps-B appliances with [category = cat-B and subcategory = sub-B]

;; ifelse (count apps-A > 0 and count apps-B > 0) [

;; ask apps-A [

;; create-similarities-with apps-B [

;; set hidden? true

;; set score read-from-string table:get ? "similarity"

;;]

;;]

;;]

;; [

;; if count apps-A = 0 [

;; output-print (word "*** Warning reading " filename

;; ": no appliances with category \"" cat-A "\" and subcategory \""

;; sub-A "\"")

;;]

;; if count apps-B = 0 [

;; output-print (word "*** Warning reading " filename

;; ": no appliances with category \"" cat-B "\" and subcategory \""

;; sub-B "\"")

;;]

;;]

;;]

;; [

 ;; The file lists pairs of appliances

;; let name-A table:get ? "appliance A"

;; let name-B table:get ? "appliance B"

;; let app-A one-of appliances with [name = name-A]

;; let app-B one-of appliances with [name = name-B]

;; ifelse (app-A != nobody and app-B != nobody and app-A != app-B) [

;; ask app-A [

;; ifelse similarity-neighbor? app-B [

;; if [score] of similarity-with app-B != table:get ? "similarity" [

;; output-print (word "*** Error reading " filename

;; ": inconsistent similarities between appliances named \""

;; name-A "\" and \"" name-B "\"")

;;]

;;]

;; [

;; create-similarity-with app-B [

;; set hidden? true

;; set score read-from-string table:get ? "similarity"

;;]

;;]

;;]

;;]

;; [

;; if app-A = nobody [

;; output-print (word "*** Error reading " filename

;; ": cannot find appliance named \"" name-A "\"")

;;]

;; if app-B = nobody [

;; output-print (word "*** Error reading " filename

;; ": cannot find appliance named \"" name-B "\"")

129

;;]

;;]

;;]

;;]

;;]

;;end

;;

;; read-fuel [filename]

;;

;; Read fuel types from the file. This is a CSV file with two heading columns:

;; type and kWh. One fuel agent will be created for each row. Fuel type name

;; must be unique

to read-fuel [filename]

 if filename != false and filename != "null" and length filename > 0 [

 foreach (read-csv filename) [

 ifelse count fuels with [fuel-type = (table:get ? "type")] > 0 [

 output-print (word "*** Error in fuel file " filename

 ": More than one fuel with type \"" (table:get ? "type") "\"")

]

 [

 create-fuels 1 [

 set hidden? true

 set fuel-type table:get ? "type"

 set unit table:get ? "unit"

 set kWh-per-unit read-from-string (table:get ? "kWh")

 set fuel-plot-colour ifelse-value table:has-key? ? "colour" [

 table:get ? "colour"

]

 [

 black

]

]

]

]

]

end

;;

;; read-appliances-fuel-use [filename]

;;

;; Read the fuel use of each appliance. This populates the consumes links. The

;; file format is CSV, where each row corresponds to a usage of an appliance in

;; a particular context. The fuel file must have been read first. The CSV file

;; must have a headings row with at least the following headings: appliance,

;; fuel, household, dwelling, purpose, step, units

to read-appliances-fuel-use [filename]

 if filename != false and filename != "null" and length filename > 0 [

 foreach (read-csv filename) [

 let this-appliance appliances with [name = table:get ? "appliance"]

 if count this-appliance = 0 [

 output-print (word "*** Error reading appliances fuel file \"" filename

 "\": no appliances with name \"" (table:get ? "appliance") "\"")

]

 if count this-appliance > 1 [

 output-print (word "*** Error reading appliances fuel file \"" filename

 "\": there are two or more appliances with name \""

 (table:get ? "appliance") "\"")

]

;; The next two lines did not work if a wild card was used, because household-types-list is

;; defined in setup-households, which is now read after setup-households. This needs a

;; more permanent bug-fix, but for now refrain from using the wild card here.

;; let hhtlist ifelse-value (table:get ? "household" = "*")

;; [household-types-list] [(list (table:get ? "household"))]

 let hhtlist (list (table:get ? "household"))

;; output-print (word "hhtlist: " hhtlist)

 let dwtlist ifelse-value (table:get ? "dwelling" = "*")

 [dwelling-types-list] [(list (table:get ? "dwelling"))]

;; output-print (word "dwtlist: " dwtlist)

 let ttlist ifelse-value (table:get ? "tenure" = "*")

 [tenure-types-list] [(list (table:get ? "tenure"))]

;; output-print (word "ttlist: " ttlist)

 let uselist ifelse-value (table:get ? "mode" = "*")

 [usage-modes-list] [(list (table:get ? "mode"))]

;; output-print (word "uselist: " uselist)

 let line-table ?

 ;;; Now do a foreach loop through all the nested loops

 foreach hhtlist [

 let hht ?

 foreach dwtlist [

 let dwt ?

130

 foreach ttlist [

 let tt ?

 foreach uselist [

 let use ?

 foreach steps-list [

 let mth ?

 let the-fuel fuels with [fuel-type = table:get line-table "fuel"]

 if count the-fuel = 0 [

 output-print (word "*** Error reading appliances fuel file \""

 filename "\": There are no fuels with type \""

 table:get line-table "fuel" "\"")

]

 if count the-fuel > 1 [

 output-print (word "*** Error reading appliances fuel file \""

 filename "\": There are two or more fuels with type \""

 table:get line-table "fuel" "\"")

]

 create-consumption-patterns 1 [

 set hidden? true

 set for-household-type hht

 set for-dwelling-type dwt

 set for-tenure-type tt

 set for-purpose table:get line-table "purpose"

 set in-usage-mode use

 set in-step mth

 create-use-to one-of the-fuel [

 set hidden? true

 if not table:has-key? line-table (word "units " mth) [

 output-print (word "*** Error reading appliances fuel file \""

 filename "\": No column data for step " mth

 ". Check steps-per-year -- currently " steps-per-year)

]

 set units-per-use read-from-string table:get line-table (word "units " mth)

]

 create-consume-from one-of this-appliance [

 set hidden? true

]

]

]

]

]

]

]

]

]

end

;;

;; read-initial-appliances-file [filename]

;;

;; Read the household-init-appliance-file

to read-initial-appliances-file [filename]

 if filename != false and filename != "null" and length filename > 0 [

 set initial-hh-appliances table:make

 set initial-hh-address-appliances table:make

 set initial-hh-dw-type-appliances table:make

 file-open filename

 while [not file-at-end?] [

 let data (split-no-null "," file-read-line)

 let hh-dw-id (split-no-null ":" (first data))

 ifelse length hh-dw-id = 1 [

 ;; it's a household name -- add it to initial-hh-appliances

 table:put initial-hh-appliances (first data) (but-first data)

]

 [

 ifelse length hh-dw-id = 2 [

 ;; it's a household-type:dwelling-name -- add it to initial-hh-address-appliances

 table:put initial-hh-address-appliances (first data) (but-first data)

]

 [

 ifelse length hh-dw-id = 3 [

 ;; it's a household-type:tenure:dwelling-type -- add it to initial-hh-dw-type-

appliances

 table:put initial-hh-dw-type-appliances (first data) (but-first data)

131

]

 [

 output-print (word "*** Warning: invalid household/dwelling identifier \""

 (first data) "\" in household-init-appliance-file " filename " -- "

 "ignoring this line")

]

]

]

]

 file-close

]

end

;;

;; read-patch-layout [filename]

;;

;; The patch layout file is now a CSV file, which specifies the type of each

;; patch. If the type is 'dwelling', then a dwelling agent is sprouted at that

;; patch, and the patch may have several dwellings on it.

to read-patch-layout [filename]

 if filename != false and filename != "null" and length filename > 0 [

 file-open filename

 while [not file-at-end?] [

 let data (array:from-list (split-no-null "," file-read-line))

 let x read-from-string array:item data 0

 let y read-from-string array:item data 1

 let ptype array:item data 2

 ask patch x y [

 set pcolor table:get patch-legend ptype

 set patch-type ptype

]

 if ptype = "dwelling" [

 let i 3

 while [i < array:length data] [

 ask patch x y [

 sprout-dwellings 1 [

 set dwelling-id array:item data i

 set shape "house"

 ;; Give the dwellings a random perturbation so we can see them if

 ;; there are two or more dwellings on a patch

 set xcor x

 set ycor y

]

 if i > 3 and pcolor mod 9 > 0 [

 set pcolor pcolor + 1

]

]

 set i i + 1

]

]

]

 file-close

]

end

;;

;; read-table2

;;

;; Creates a two-level table from a file in which each line encodes a table as

;; alternating keys and values. The first item in a line is a key for the main

;; table, the remaining items are alternating keys and values for a subtable.

to-report read-table2 [table-file]

 let table table:make

 file-open table-file

 while [not file-at-end?] [

 let line file-read-line

 let data (split "," line)

 let key (first data)

 let value (list-to-table but-first data)

 table:put table key value

]

 report table

end

;;

;; ;;

;; Utilities ;;

;; ;;

;;

;;

;; make-social-links [other-hh]

132

;;

;; Make all the social links from this household to households in the list

to make-social-links [other-hh]

 while [length other-hh > 0] [

 if not name = first other-hh [

 let hh one-of households with [name = first other-hh]

 if not hh = nobody and not social-link-neighbor? hh [

 create-social-link-with hh

 set other-hh but-first other-hh

]

]

]

end

;;

;; sample [string]

;;

;; String is a sampled formatted string containing a distribution and parameters

;; for it in order

to-report sample [string]

 if is-number? string [

 report string

]

 let distribution array:from-list split " " string

 let i 1

 while [i < array:length distribution] [

 array:set distribution i (read-from-string (array:item distribution i))

 set i i + 1

]

 if array:item distribution 0 = "uniform" [

 let minimum array:item distribution 1

 let maximum array:item distribution 2

 report minimum + random-float (maximum - minimum)

]

 if array:item distribution 0 = "uniform-integer" [

 let minimum array:item distribution 1

 let maximum array:item distribution 2

 report minimum + random (1 + minimum - maximum)

]

 if array:item distribution 0 = "normal" [

 report random-normal (array:item distribution 1) (array:item distribution 2)

]

 if array:item distribution 0 = "poisson" [

 report random-poisson (array:item distribution 1)

]

 if array:item distribution 0 = "exponential" [

 report random-exponential (array:item distribution 1)

]

 if array:item distribution 0 = "gamma" [

 report random-gamma (array:item distribution 1) (array:item distribution 2)

]

 report read-from-string array:item distribution 0

end

;;

;; assign-replacements [table]

;;

;; assign replacements to appliances using the hash table, with key the name

;; of the appliance, and value a list of names of appliances it replaces

;; This procedure is not used.

;;to assign-replacements [table]

;; ask appliances [

;; if table:has-key? table name [

;; let replacement-list table:get table name

;; foreach replacement-list [

;; let other-appliance appliances with [name = ?]

;; if count other-appliance = 1 and other-appliance != self [

;; create-replacement-to one-of other-appliance [

;; set hidden? true

;;]

;;]

;;]

;;]

;;]

;;end

;;

;; read-text [text]

;;

;; read the text given as the argument from the file, and print an error message

;; if that text is not read

to read-text [text]

 let text-read file-read-characters length text

 if text-read != text [

133

 output-print (word "*** Error in currently open file: expecting \"" text "\", found \""

 text-read "\"")

 stop

]

end

;;

;; my-member?

;;

;; Return the whether or not an item is a member of a collection, allowing for

;; the possibility that either the item or the collection may be nobody

to-report my-member? [an-item a-collection]

 report ifelse-value (an-item = nobody) [

 false

]

 [

 ifelse-value (a-collection = nobody) [

 false

]

 [

 member? an-item a-collection

]

]

end

;;

;; split

;;

;; Separate some text into a list of strings delimited by the separator. Why

;; NetLogo doesn't have a string function like this in its dictionary is a

;; mystery. Maybe it does and I couldn't find it :-).

;;

;; This procedure is copied from the LOCAWv1.nlogo model

to-report split [separator text]

 let cells []

 let mytext text

 while [position separator mytext != false] [

 set cells fput (substring mytext 0 (position separator mytext)) cells

 set mytext substring mytext ((position separator mytext)

 + length separator) length mytext

]

 set cells fput mytext cells

 report reverse cells

end

;;

;; split-no-null

;;

;; Split and remove null entries

to-report split-no-null [separator text]

 let cells split separator text

 let no-nulls []

 foreach cells [

 if length ? > 0 [

 set no-nulls fput ? no-nulls

]

]

 report reverse no-nulls

end

;;

;; list-to-table

;;

;; Returns a table made by interpreting a list as alternating keys and values

to-report list-to-table [list1]

 let table table:make

 while [length list1 > 0] [

 table:put table (first list1) read-from-string (first but-first list1)

 set list1 but-first (but-first list1)

]

 report table

end

;;

;; show-licence-message

;;

;; show the GNU GPL message when the model runs

to show-licence-message

 print "CEDSS 3.0 Copyright (C) 2010 Macaulay Land Use Research Institute"

 print "This program comes with ABSOLUTELY NO WARRANTY. This is free software,"

 print "and you are welcome to redistribute it under certain conditions; for"

 print "more information on this, and the (lack of) warranty, see the LICENCE"

134

 print "section in the Information tab."

end

;;

;; my-export-all-plots

;;

;; Export all plots to a file that is guaranteed not to exist

to my-export-all-plots [filename]

 ifelse file-exists? filename [

 let stem substring filename 0 (length filename - 4)

 let x 0

 set filename (word stem "-" x ".csv")

 while [file-exists? filename] [

 set x x + 1

 set filename (word stem "-" x ".csv")

]

 export-all-plots filename

]

 [

 export-all-plots filename

]

end

;;

;; ;;

;; Condition rules for the usage matrix ;;

;; ;;

;;

;;

;; negative-capital-reserve

to-report negative-capital-reserve

 ifelse capital-reserve < 0 [

 report true

]

 [

 report false

]

end

